Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Additional definitions for (multivariate) polynomials
mhpmpl
Next ⟩
mhpdeg
Metamath Proof Explorer
Ascii
Unicode
Theorem
mhpmpl
Description:
A homogeneous polynomial is a polynomial.
(Contributed by
Steven Nguyen
, 25-Aug-2023)
Ref
Expression
Hypotheses
mhpmpl.h
⊢
H
=
I
mHomP
R
mhpmpl.p
⊢
P
=
I
mPoly
R
mhpmpl.b
⊢
B
=
Base
P
mhpmpl.i
⊢
φ
→
I
∈
V
mhpmpl.r
⊢
φ
→
R
∈
W
mhpmpl.n
⊢
φ
→
N
∈
ℕ
0
mhpmpl.x
⊢
φ
→
X
∈
H
⁡
N
Assertion
mhpmpl
⊢
φ
→
X
∈
B
Proof
Step
Hyp
Ref
Expression
1
mhpmpl.h
⊢
H
=
I
mHomP
R
2
mhpmpl.p
⊢
P
=
I
mPoly
R
3
mhpmpl.b
⊢
B
=
Base
P
4
mhpmpl.i
⊢
φ
→
I
∈
V
5
mhpmpl.r
⊢
φ
→
R
∈
W
6
mhpmpl.n
⊢
φ
→
N
∈
ℕ
0
7
mhpmpl.x
⊢
φ
→
X
∈
H
⁡
N
8
eqid
⊢
0
R
=
0
R
9
eqid
⊢
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
=
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
10
1
2
3
8
9
4
5
6
ismhp
⊢
φ
→
X
∈
H
⁡
N
↔
X
∈
B
∧
X
supp
0
R
⊆
g
∈
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
11
10
simprbda
⊢
φ
∧
X
∈
H
⁡
N
→
X
∈
B
12
7
11
mpdan
⊢
φ
→
X
∈
B