Metamath Proof Explorer


Theorem mhpdeg

Description: All nonzero terms of a homogeneous polynomial have degree N . (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpdeg.h H = I mHomP R
mhpdeg.0 0 ˙ = 0 R
mhpdeg.d D = h 0 I | h -1 Fin
mhpdeg.i φ I V
mhpdeg.r φ R W
mhpdeg.n φ N 0
mhpdeg.x φ X H N
Assertion mhpdeg φ X supp 0 ˙ g D | fld 𝑠 0 g = N

Proof

Step Hyp Ref Expression
1 mhpdeg.h H = I mHomP R
2 mhpdeg.0 0 ˙ = 0 R
3 mhpdeg.d D = h 0 I | h -1 Fin
4 mhpdeg.i φ I V
5 mhpdeg.r φ R W
6 mhpdeg.n φ N 0
7 mhpdeg.x φ X H N
8 eqid I mPoly R = I mPoly R
9 eqid Base I mPoly R = Base I mPoly R
10 1 8 9 2 3 4 5 6 ismhp φ X H N X Base I mPoly R X supp 0 ˙ g D | fld 𝑠 0 g = N
11 10 simplbda φ X H N X supp 0 ˙ g D | fld 𝑠 0 g = N
12 7 11 mpdan φ X supp 0 ˙ g D | fld 𝑠 0 g = N