Metamath Proof Explorer


Theorem mhp0cl

Description: The zero polynomial is homogeneous. Under df-mhp , it has any (nonnegative integer) degree which loosely corresponds to the value "undefined". The values -oo and 0 are also used in Metamath (by df-mdeg and df-dgr respectively) and the literature: https://math.stackexchange.com/a/1796314/593843 . (Contributed by SN, 12-Sep-2023)

Ref Expression
Hypotheses mhp0cl.h H = I mHomP R
mhp0cl.0 0 ˙ = 0 R
mhp0cl.d D = h 0 I | h -1 Fin
mhp0cl.i φ I V
mhp0cl.r φ R Grp
mhp0cl.n φ N 0
Assertion mhp0cl φ D × 0 ˙ H N

Proof

Step Hyp Ref Expression
1 mhp0cl.h H = I mHomP R
2 mhp0cl.0 0 ˙ = 0 R
3 mhp0cl.d D = h 0 I | h -1 Fin
4 mhp0cl.i φ I V
5 mhp0cl.r φ R Grp
6 mhp0cl.n φ N 0
7 eqid I mPoly R = I mPoly R
8 eqid Base I mPoly R = Base I mPoly R
9 eqid 0 I mPoly R = 0 I mPoly R
10 7 3 2 9 4 5 mpl0 φ 0 I mPoly R = D × 0 ˙
11 7 mplgrp I V R Grp I mPoly R Grp
12 4 5 11 syl2anc φ I mPoly R Grp
13 8 9 grpidcl I mPoly R Grp 0 I mPoly R Base I mPoly R
14 12 13 syl φ 0 I mPoly R Base I mPoly R
15 10 14 eqeltrrd φ D × 0 ˙ Base I mPoly R
16 fczsupp0 D × 0 ˙ supp 0 ˙ =
17 0ss g D | fld 𝑠 0 g = N
18 16 17 eqsstri D × 0 ˙ supp 0 ˙ g D | fld 𝑠 0 g = N
19 18 a1i φ D × 0 ˙ supp 0 ˙ g D | fld 𝑠 0 g = N
20 1 7 8 2 3 4 5 6 15 19 ismhp2 φ D × 0 ˙ H N