Metamath Proof Explorer


Definition df-mdeg

Description: Define the degree of a polynomial. Note (SO): as an experiment I am using a definition which makes the degree of the zero polynomial -oo , contrary to the convention used in df-dgr . (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Assertion df-mdeg mDeg=iV,rVfBaseimPolyrsupranhsupp0rffldh*<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmdg classmDeg
1 vi setvari
2 cvv classV
3 vr setvarr
4 vf setvarf
5 cbs classBase
6 1 cv setvari
7 cmpl classmPoly
8 3 cv setvarr
9 6 8 7 co classimPolyr
10 9 5 cfv classBaseimPolyr
11 vh setvarh
12 4 cv setvarf
13 csupp classsupp
14 c0g class0𝑔
15 8 14 cfv class0r
16 12 15 13 co classsupp0rf
17 ccnfld classfld
18 cgsu classΣ𝑔
19 11 cv setvarh
20 17 19 18 co classfldh
21 11 16 20 cmpt classhsupp0rffldh
22 21 crn classranhsupp0rffldh
23 cxr class*
24 clt class<
25 22 23 24 csup classsupranhsupp0rffldh*<
26 4 10 25 cmpt classfBaseimPolyrsupranhsupp0rffldh*<
27 1 3 2 2 26 cmpo classiV,rVfBaseimPolyrsupranhsupp0rffldh*<
28 0 27 wceq wffmDeg=iV,rVfBaseimPolyrsupranhsupp0rffldh*<