| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhpsclcl.h |
|
| 2 |
|
mhpsclcl.p |
|
| 3 |
|
mhpsclcl.a |
|
| 4 |
|
mhpsclcl.k |
|
| 5 |
|
mhpsclcl.i |
|
| 6 |
|
mhpsclcl.r |
|
| 7 |
|
mhpsclcl.c |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
5
|
adantr |
|
| 11 |
6
|
adantr |
|
| 12 |
7
|
adantr |
|
| 13 |
2 8 9 4 3 10 11 12
|
mplascl |
|
| 14 |
|
eqeq1 |
|
| 15 |
14
|
ifbid |
|
| 16 |
15
|
adantl |
|
| 17 |
|
simpr |
|
| 18 |
|
fvexd |
|
| 19 |
7 18
|
ifexd |
|
| 20 |
19
|
adantr |
|
| 21 |
13 16 17 20
|
fvmptd |
|
| 22 |
21
|
neeq1d |
|
| 23 |
|
iffalse |
|
| 24 |
23
|
necon1ai |
|
| 25 |
|
fconstmpt |
|
| 26 |
25
|
oveq2i |
|
| 27 |
|
nn0subm |
|
| 28 |
|
eqid |
|
| 29 |
28
|
submmnd |
|
| 30 |
27 29
|
ax-mp |
|
| 31 |
|
cnfld0 |
|
| 32 |
28 31
|
subm0 |
|
| 33 |
27 32
|
ax-mp |
|
| 34 |
33
|
gsumz |
|
| 35 |
30 10 34
|
sylancr |
|
| 36 |
26 35
|
eqtrid |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
eqeq1d |
|
| 39 |
36 38
|
syl5ibrcom |
|
| 40 |
24 39
|
syl5 |
|
| 41 |
22 40
|
sylbid |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
|
eqid |
|
| 44 |
|
0nn0 |
|
| 45 |
44
|
a1i |
|
| 46 |
2 43 4 3 5 6
|
mplasclf |
|
| 47 |
46 7
|
ffvelcdmd |
|
| 48 |
1 2 43 9 8 45 47
|
ismhp3 |
|
| 49 |
42 48
|
mpbird |
|