Step |
Hyp |
Ref |
Expression |
1 |
|
mhpsclcl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpsclcl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhpsclcl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
4 |
|
mhpsclcl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
mhpsclcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
mhpsclcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
mhpsclcl.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
8 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑉 ) |
11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐶 ∈ 𝐾 ) |
13 |
2 8 9 4 3 10 11 12
|
mplascl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ 𝐶 ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ) ) |
14 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑑 → ( 𝑦 = ( 𝐼 × { 0 } ) ↔ 𝑑 = ( 𝐼 × { 0 } ) ) ) |
15 |
14
|
ifbid |
⊢ ( 𝑦 = 𝑑 → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑦 = 𝑑 ) → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
18 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
19 |
7 18
|
ifexd |
⊢ ( 𝜑 → if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ∈ V ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ∈ V ) |
21 |
13 16 17 20
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝐴 ‘ 𝐶 ) ‘ 𝑑 ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ) |
22 |
21
|
neeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐴 ‘ 𝐶 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) ↔ if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
23 |
|
iffalse |
⊢ ( ¬ 𝑑 = ( 𝐼 × { 0 } ) → if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
24 |
23
|
necon1ai |
⊢ ( if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ≠ ( 0g ‘ 𝑅 ) → 𝑑 = ( 𝐼 × { 0 } ) ) |
25 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑘 ∈ 𝐼 ↦ 0 ) |
26 |
25
|
oveq2i |
⊢ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝐼 × { 0 } ) ) = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑘 ∈ 𝐼 ↦ 0 ) ) |
27 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
28 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
29 |
28
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ( ℂfld ↾s ℕ0 ) ∈ Mnd ) |
30 |
27 29
|
ax-mp |
⊢ ( ℂfld ↾s ℕ0 ) ∈ Mnd |
31 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
32 |
28 31
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
33 |
27 32
|
ax-mp |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
34 |
33
|
gsumz |
⊢ ( ( ( ℂfld ↾s ℕ0 ) ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑘 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
35 |
30 10 34
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑘 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
36 |
26 35
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝐼 × { 0 } ) ) = 0 ) |
37 |
|
oveq2 |
⊢ ( 𝑑 = ( 𝐼 × { 0 } ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝐼 × { 0 } ) ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑑 = ( 𝐼 × { 0 } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 0 ↔ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝐼 × { 0 } ) ) = 0 ) ) |
39 |
36 38
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 = ( 𝐼 × { 0 } ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 0 ) ) |
40 |
24 39
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g ‘ 𝑅 ) ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 0 ) ) |
41 |
22 40
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐴 ‘ 𝐶 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 0 ) ) |
42 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( ( 𝐴 ‘ 𝐶 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 0 ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
44 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
45 |
44
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
46 |
2 43 4 3 5 6
|
mplasclf |
⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ ( Base ‘ 𝑃 ) ) |
47 |
46 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ ( Base ‘ 𝑃 ) ) |
48 |
1 2 43 9 8 5 6 45 47
|
ismhp3 |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐶 ) ∈ ( 𝐻 ‘ 0 ) ↔ ∀ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( ( 𝐴 ‘ 𝐶 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 0 ) ) ) |
49 |
42 48
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ ( 𝐻 ‘ 0 ) ) |