Metamath Proof Explorer


Theorem mhpsclcl

Description: A scalar (or constant) polynomial has degree 0. Compare deg1scl . In other contexts, there may be an exception for the zero polynomial, but under df-mhp the zero polynomial can be any degree (see mhp0cl ) so there is no exception. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses mhpsclcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpsclcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhpsclcl.a 𝐴 = ( algSc ‘ 𝑃 )
mhpsclcl.k 𝐾 = ( Base ‘ 𝑅 )
mhpsclcl.i ( 𝜑𝐼𝑉 )
mhpsclcl.r ( 𝜑𝑅 ∈ Ring )
mhpsclcl.c ( 𝜑𝐶𝐾 )
Assertion mhpsclcl ( 𝜑 → ( 𝐴𝐶 ) ∈ ( 𝐻 ‘ 0 ) )

Proof

Step Hyp Ref Expression
1 mhpsclcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpsclcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhpsclcl.a 𝐴 = ( algSc ‘ 𝑃 )
4 mhpsclcl.k 𝐾 = ( Base ‘ 𝑅 )
5 mhpsclcl.i ( 𝜑𝐼𝑉 )
6 mhpsclcl.r ( 𝜑𝑅 ∈ Ring )
7 mhpsclcl.c ( 𝜑𝐶𝐾 )
8 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
9 eqid ( 0g𝑅 ) = ( 0g𝑅 )
10 5 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐼𝑉 )
11 6 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring )
12 7 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝐶𝐾 )
13 2 8 9 4 3 10 11 12 mplascl ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝐴𝐶 ) = ( 𝑦 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) ) )
14 eqeq1 ( 𝑦 = 𝑑 → ( 𝑦 = ( 𝐼 × { 0 } ) ↔ 𝑑 = ( 𝐼 × { 0 } ) ) )
15 14 ifbid ( 𝑦 = 𝑑 → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) )
16 15 adantl ( ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑦 = 𝑑 ) → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) )
17 simpr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
18 fvexd ( 𝜑 → ( 0g𝑅 ) ∈ V )
19 7 18 ifexd ( 𝜑 → if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) ∈ V )
20 19 adantr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) ∈ V )
21 13 16 17 20 fvmptd ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝐴𝐶 ) ‘ 𝑑 ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) )
22 21 neeq1d ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝐴𝐶 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) ↔ if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) ≠ ( 0g𝑅 ) ) )
23 iffalse ( ¬ 𝑑 = ( 𝐼 × { 0 } ) → if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) = ( 0g𝑅 ) )
24 23 necon1ai ( if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) ≠ ( 0g𝑅 ) → 𝑑 = ( 𝐼 × { 0 } ) )
25 fconstmpt ( 𝐼 × { 0 } ) = ( 𝑘𝐼 ↦ 0 )
26 25 oveq2i ( ( ℂflds0 ) Σg ( 𝐼 × { 0 } ) ) = ( ( ℂflds0 ) Σg ( 𝑘𝐼 ↦ 0 ) )
27 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
28 eqid ( ℂflds0 ) = ( ℂflds0 )
29 28 submmnd ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ( ℂflds0 ) ∈ Mnd )
30 27 29 ax-mp ( ℂflds0 ) ∈ Mnd
31 cnfld0 0 = ( 0g ‘ ℂfld )
32 28 31 subm0 ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂflds0 ) ) )
33 27 32 ax-mp 0 = ( 0g ‘ ( ℂflds0 ) )
34 33 gsumz ( ( ( ℂflds0 ) ∈ Mnd ∧ 𝐼𝑉 ) → ( ( ℂflds0 ) Σg ( 𝑘𝐼 ↦ 0 ) ) = 0 )
35 30 10 34 sylancr ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ℂflds0 ) Σg ( 𝑘𝐼 ↦ 0 ) ) = 0 )
36 26 35 syl5eq ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ℂflds0 ) Σg ( 𝐼 × { 0 } ) ) = 0 )
37 oveq2 ( 𝑑 = ( 𝐼 × { 0 } ) → ( ( ℂflds0 ) Σg 𝑑 ) = ( ( ℂflds0 ) Σg ( 𝐼 × { 0 } ) ) )
38 37 eqeq1d ( 𝑑 = ( 𝐼 × { 0 } ) → ( ( ( ℂflds0 ) Σg 𝑑 ) = 0 ↔ ( ( ℂflds0 ) Σg ( 𝐼 × { 0 } ) ) = 0 ) )
39 36 38 syl5ibrcom ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑑 = ( 𝐼 × { 0 } ) → ( ( ℂflds0 ) Σg 𝑑 ) = 0 ) )
40 24 39 syl5 ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( if ( 𝑑 = ( 𝐼 × { 0 } ) , 𝐶 , ( 0g𝑅 ) ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑑 ) = 0 ) )
41 22 40 sylbid ( ( 𝜑𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝐴𝐶 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑑 ) = 0 ) )
42 41 ralrimiva ( 𝜑 → ∀ 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( ( 𝐴𝐶 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑑 ) = 0 ) )
43 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
44 0nn0 0 ∈ ℕ0
45 44 a1i ( 𝜑 → 0 ∈ ℕ0 )
46 2 43 4 3 5 6 mplasclf ( 𝜑𝐴 : 𝐾 ⟶ ( Base ‘ 𝑃 ) )
47 46 7 ffvelrnd ( 𝜑 → ( 𝐴𝐶 ) ∈ ( Base ‘ 𝑃 ) )
48 1 2 43 9 8 5 6 45 47 ismhp3 ( 𝜑 → ( ( 𝐴𝐶 ) ∈ ( 𝐻 ‘ 0 ) ↔ ∀ 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( ( 𝐴𝐶 ) ‘ 𝑑 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑑 ) = 0 ) ) )
49 42 48 mpbird ( 𝜑 → ( 𝐴𝐶 ) ∈ ( 𝐻 ‘ 0 ) )