Step |
Hyp |
Ref |
Expression |
1 |
|
mhpvarcl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpvarcl.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
3 |
|
mhpvarcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
4 |
|
mhpvarcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
mhpvarcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
6 |
|
iffalse |
⊢ ( ¬ 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → if ( 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑊 ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑋 ∈ 𝐼 ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
14 |
2 7 8 9 10 11 12 13
|
mvrval2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑑 ) = if ( 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
15 |
14
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑑 ) = ( 0g ‘ 𝑅 ) ↔ if ( 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
16 |
6 15
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ¬ 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑑 ) = ( 0g ‘ 𝑅 ) ) ) |
17 |
16
|
necon1ad |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
18 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
19 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
20 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
21 |
19 20
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
22 |
18 21
|
ax-mp |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
23 |
19
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ( ℂfld ↾s ℕ0 ) ∈ Mnd ) |
24 |
18 23
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ℂfld ↾s ℕ0 ) ∈ Mnd ) |
25 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
26 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
27 |
19
|
submbas |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
28 |
18 27
|
ax-mp |
⊢ ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
29 |
26 28
|
eleqtri |
⊢ 1 ∈ ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 1 ∈ ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
31 |
22 24 10 12 25 30
|
gsummptif1n0 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 1 ) |
32 |
|
oveq2 |
⊢ ( 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) |
33 |
32
|
eqeq1d |
⊢ ( 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 1 ↔ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) = 1 ) ) |
34 |
31 33
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 1 ) ) |
35 |
17 34
|
syld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 1 ) ) |
36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 1 ) ) |
37 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
38 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
39 |
26
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
40 |
37 2 38 3 4 5
|
mvrcl |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
41 |
1 37 38 8 7 3 4 39 40
|
ismhp3 |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ∈ ( 𝐻 ‘ 1 ) ↔ ∀ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( ( 𝑉 ‘ 𝑋 ) ‘ 𝑑 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑑 ) = 1 ) ) ) |
42 |
36 41
|
mpbird |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ ( 𝐻 ‘ 1 ) ) |