Step |
Hyp |
Ref |
Expression |
1 |
|
mhpmulcl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpmulcl.y |
⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhpmulcl.t |
⊢ · = ( .r ‘ 𝑌 ) |
4 |
|
mhpmulcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
mhpmulcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
mhpmulcl.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
7 |
|
mhpmulcl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
8 |
|
mhpmulcl.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐻 ‘ 𝑀 ) ) |
9 |
|
mhpmulcl.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝐻 ‘ 𝑁 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
12 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
13 |
1 2 10 4 5 6 8
|
mhpmpl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝑌 ) ) |
14 |
1 2 10 4 5 7 9
|
mhpmpl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝑌 ) ) |
15 |
2 10 11 3 12 13 14
|
mplmul |
⊢ ( 𝜑 → ( 𝑃 · 𝑄 ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑃 · 𝑄 ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) ) ) ) |
17 |
|
breq2 |
⊢ ( 𝑑 = 𝑥 → ( 𝑐 ∘r ≤ 𝑑 ↔ 𝑐 ∘r ≤ 𝑥 ) ) |
18 |
17
|
rabbidv |
⊢ ( 𝑑 = 𝑥 → { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } = { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
19 |
|
fvoveq1 |
⊢ ( 𝑑 = 𝑥 → ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) = ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑑 = 𝑥 → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) = ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) |
21 |
18 20
|
mpteq12dv |
⊢ ( 𝑑 = 𝑥 → ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑑 = 𝑥 → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑑 = 𝑥 ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑑 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑑 ∘f − 𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
25 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ∈ V ) |
26 |
16 23 24 25
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ) |
27 |
26
|
neeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) ↔ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
28 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝜑 ) |
29 |
|
oveq2 |
⊢ ( 𝑐 = 𝑒 → ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ) |
30 |
29
|
eqeq1d |
⊢ ( 𝑐 = 𝑒 → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 ↔ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ) ) |
31 |
30
|
necon3bbid |
⊢ ( 𝑐 = 𝑒 → ( ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 ↔ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) ) |
32 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
33 |
|
elrabi |
⊢ ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } → 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
34 |
32 33
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
35 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) |
36 |
31 34 35
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) |
37 |
|
notrab |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) = { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } |
38 |
36 37
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
40 |
2 39 10 12 13
|
mplelf |
⊢ ( 𝜑 → 𝑃 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
41 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
42 |
1 41 12 4 5 6 8
|
mhpdeg |
⊢ ( 𝜑 → ( 𝑃 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) |
43 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
44 |
43
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
45 |
44
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
46 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
47 |
40 42 45 46
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑀 } ) ) → ( 𝑃 ‘ 𝑒 ) = ( 0g ‘ 𝑅 ) ) |
48 |
28 38 47
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑃 ‘ 𝑒 ) = ( 0g ‘ 𝑅 ) ) |
49 |
48
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) |
50 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑅 ∈ Ring ) |
51 |
14
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑄 ∈ ( Base ‘ 𝑌 ) ) |
52 |
2 39 10 12 51
|
mplelf |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑄 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
53 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
54 |
|
eqid |
⊢ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } = { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } |
55 |
12 54
|
psrbagconcl |
⊢ ( ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
56 |
53 32 55
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
57 |
|
elrabi |
⊢ ( ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } → ( 𝑥 ∘f − 𝑒 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
58 |
56 57
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
59 |
52 58
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) |
60 |
39 11 41
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
61 |
50 59 60
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
62 |
49 61
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
63 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝜑 ) |
64 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝑥 ∘f − 𝑒 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) |
65 |
64
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑥 ∘f − 𝑒 ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 ↔ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) ) |
66 |
65
|
necon3bbid |
⊢ ( 𝑐 = ( 𝑥 ∘f − 𝑒 ) → ( ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 ↔ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) ) |
67 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
68 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
69 |
67 68 55
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
70 |
69 57
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
71 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) |
72 |
66 70 71
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑥 ∘f − 𝑒 ) ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) |
73 |
|
notrab |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) = { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } |
74 |
72 73
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑥 ∘f − 𝑒 ) ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) ) |
75 |
2 39 10 12 14
|
mplelf |
⊢ ( 𝜑 → 𝑄 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
76 |
1 41 12 4 5 7 9
|
mhpdeg |
⊢ ( 𝜑 → ( 𝑄 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) |
77 |
75 76 45 46
|
suppssr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∘f − 𝑒 ) ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑐 ) = 𝑁 } ) ) → ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) = ( 0g ‘ 𝑅 ) ) |
78 |
63 74 77
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) = ( 0g ‘ 𝑅 ) ) |
79 |
78
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
80 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑅 ∈ Ring ) |
81 |
13
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑃 ∈ ( Base ‘ 𝑌 ) ) |
82 |
2 39 10 12 81
|
mplelf |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑃 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
83 |
33
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
84 |
83
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
85 |
82 84
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( 𝑃 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ) |
86 |
39 11 41
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑃 ‘ 𝑒 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
87 |
80 85 86
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
88 |
79 87
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
89 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
90 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
91 |
90
|
submbas |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
92 |
89 91
|
ax-mp |
⊢ ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
93 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
94 |
90 93
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
95 |
89 94
|
ax-mp |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
96 |
|
nn0ex |
⊢ ℕ0 ∈ V |
97 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
98 |
90 97
|
ressplusg |
⊢ ( ℕ0 ∈ V → + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
99 |
96 98
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) |
100 |
|
cnring |
⊢ ℂfld ∈ Ring |
101 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
102 |
100 101
|
ax-mp |
⊢ ℂfld ∈ CMnd |
103 |
90
|
submcmn |
⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
104 |
102 89 103
|
mp2an |
⊢ ( ℂfld ↾s ℕ0 ) ∈ CMnd |
105 |
104
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
106 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝐼 ∈ 𝑉 ) |
107 |
12
|
psrbagf |
⊢ ( 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑒 : 𝐼 ⟶ ℕ0 ) |
108 |
83 107
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 : 𝐼 ⟶ ℕ0 ) |
109 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
110 |
12
|
psrbagf |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑥 : 𝐼 ⟶ ℕ0 ) |
111 |
109 110
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
112 |
111
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 Fn 𝐼 ) |
113 |
108
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 Fn 𝐼 ) |
114 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
115 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑖 ) = ( 𝑥 ‘ 𝑖 ) ) |
116 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑖 ) = ( 𝑒 ‘ 𝑖 ) ) |
117 |
112 113 106 106 114 115 116
|
offval |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑖 ) − ( 𝑒 ‘ 𝑖 ) ) ) ) |
118 |
|
simpl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ) |
119 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) |
120 |
|
breq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 ∘r ≤ 𝑥 ↔ 𝑒 ∘r ≤ 𝑥 ) ) |
121 |
120
|
elrab |
⊢ ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↔ ( 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ 𝑒 ∘r ≤ 𝑥 ) ) |
122 |
121
|
simprbi |
⊢ ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } → 𝑒 ∘r ≤ 𝑥 ) |
123 |
119 122
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → 𝑒 ∘r ≤ 𝑥 ) |
124 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
125 |
113 112 106 106 114 116 115
|
ofrval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑒 ∘r ≤ 𝑥 ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑖 ) ≤ ( 𝑥 ‘ 𝑖 ) ) |
126 |
118 123 124 125
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑖 ) ≤ ( 𝑥 ‘ 𝑖 ) ) |
127 |
108
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑖 ) ∈ ℕ0 ) |
128 |
111
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑖 ) ∈ ℕ0 ) |
129 |
|
nn0sub |
⊢ ( ( ( 𝑒 ‘ 𝑖 ) ∈ ℕ0 ∧ ( 𝑥 ‘ 𝑖 ) ∈ ℕ0 ) → ( ( 𝑒 ‘ 𝑖 ) ≤ ( 𝑥 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 𝑖 ) − ( 𝑒 ‘ 𝑖 ) ) ∈ ℕ0 ) ) |
130 |
127 128 129
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑒 ‘ 𝑖 ) ≤ ( 𝑥 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 𝑖 ) − ( 𝑒 ‘ 𝑖 ) ) ∈ ℕ0 ) ) |
131 |
126 130
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑖 ) − ( 𝑒 ‘ 𝑖 ) ) ∈ ℕ0 ) |
132 |
117 131
|
fmpt3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) : 𝐼 ⟶ ℕ0 ) |
133 |
108
|
ffund |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → Fun 𝑒 ) |
134 |
|
c0ex |
⊢ 0 ∈ V |
135 |
106 134
|
jctir |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) ) |
136 |
|
frnsuppeq |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝑒 : 𝐼 ⟶ ℕ0 → ( 𝑒 supp 0 ) = ( ◡ 𝑒 “ ( ℕ0 ∖ { 0 } ) ) ) ) |
137 |
135 108 136
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 supp 0 ) = ( ◡ 𝑒 “ ( ℕ0 ∖ { 0 } ) ) ) |
138 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
139 |
138
|
imaeq2i |
⊢ ( ◡ 𝑒 “ ℕ ) = ( ◡ 𝑒 “ ( ℕ0 ∖ { 0 } ) ) |
140 |
137 139
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 supp 0 ) = ( ◡ 𝑒 “ ℕ ) ) |
141 |
12
|
psrbag |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑒 “ ℕ ) ∈ Fin ) ) ) |
142 |
106 141
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑒 “ ℕ ) ∈ Fin ) ) ) |
143 |
83 142
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑒 “ ℕ ) ∈ Fin ) ) |
144 |
143
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ◡ 𝑒 “ ℕ ) ∈ Fin ) |
145 |
140 144
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 supp 0 ) ∈ Fin ) |
146 |
83
|
elexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 ∈ V ) |
147 |
|
isfsupp |
⊢ ( ( 𝑒 ∈ V ∧ 0 ∈ V ) → ( 𝑒 finSupp 0 ↔ ( Fun 𝑒 ∧ ( 𝑒 supp 0 ) ∈ Fin ) ) ) |
148 |
146 134 147
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 finSupp 0 ↔ ( Fun 𝑒 ∧ ( 𝑒 supp 0 ) ∈ Fin ) ) ) |
149 |
133 145 148
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 finSupp 0 ) |
150 |
112 113 106 106
|
offun |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → Fun ( 𝑥 ∘f − 𝑒 ) ) |
151 |
12
|
psrbagfsupp |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑥 finSupp 0 ) |
152 |
109 151
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 finSupp 0 ) |
153 |
152 149
|
fsuppunfi |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑥 supp 0 ) ∪ ( 𝑒 supp 0 ) ) ∈ Fin ) |
154 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
155 |
154
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 0 ∈ ℕ0 ) |
156 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
157 |
156
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 0 − 0 ) = 0 ) |
158 |
106 155 111 108 157
|
suppofssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑒 ) supp 0 ) ⊆ ( ( 𝑥 supp 0 ) ∪ ( 𝑒 supp 0 ) ) ) |
159 |
153 158
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑒 ) supp 0 ) ∈ Fin ) |
160 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) ∈ V ) |
161 |
|
isfsupp |
⊢ ( ( ( 𝑥 ∘f − 𝑒 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥 ∘f − 𝑒 ) finSupp 0 ↔ ( Fun ( 𝑥 ∘f − 𝑒 ) ∧ ( ( 𝑥 ∘f − 𝑒 ) supp 0 ) ∈ Fin ) ) ) |
162 |
160 134 161
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑒 ) finSupp 0 ↔ ( Fun ( 𝑥 ∘f − 𝑒 ) ∧ ( ( 𝑥 ∘f − 𝑒 ) supp 0 ) ∈ Fin ) ) ) |
163 |
150 159 162
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) finSupp 0 ) |
164 |
92 95 99 105 106 108 132 149 163
|
gsumadd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑒 ∘f + ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) ) |
165 |
108
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑏 ) ∈ ℕ0 ) |
166 |
165
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑏 ) ∈ ℂ ) |
167 |
111
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑏 ) ∈ ℕ0 ) |
168 |
167
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑏 ) ∈ ℂ ) |
169 |
166 168
|
pncan3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑒 ‘ 𝑏 ) + ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ) = ( 𝑥 ‘ 𝑏 ) ) |
170 |
169
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑏 ) + ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ) ) = ( 𝑏 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑏 ) ) ) |
171 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑒 ‘ 𝑏 ) ∈ V ) |
172 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ∈ V ) |
173 |
108
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑒 = ( 𝑏 ∈ 𝐼 ↦ ( 𝑒 ‘ 𝑏 ) ) ) |
174 |
111
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → 𝑥 = ( 𝑏 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑏 ) ) ) |
175 |
106 167 165 174 173
|
offval2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑒 ) = ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ) ) |
176 |
106 171 172 173 175
|
offval2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 ∘f + ( 𝑥 ∘f − 𝑒 ) ) = ( 𝑏 ∈ 𝐼 ↦ ( ( 𝑒 ‘ 𝑏 ) + ( ( 𝑥 ‘ 𝑏 ) − ( 𝑒 ‘ 𝑏 ) ) ) ) ) |
177 |
170 176 174
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( 𝑒 ∘f + ( 𝑥 ∘f − 𝑒 ) ) = 𝑥 ) |
178 |
177
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑒 ∘f + ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ) |
179 |
164 178
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ) |
180 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) |
181 |
179 180
|
eqnetrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) ≠ ( 𝑀 + 𝑁 ) ) |
182 |
|
oveq12 |
⊢ ( ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) = ( 𝑀 + 𝑁 ) ) |
183 |
182
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) = ( 𝑀 + 𝑁 ) ) ) |
184 |
183
|
necon3ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) + ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ) ≠ ( 𝑀 + 𝑁 ) → ¬ ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) ) ) |
185 |
181 184
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ¬ ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) ) |
186 |
|
neorian |
⊢ ( ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ∨ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) ↔ ¬ ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) = 𝑁 ) ) |
187 |
185 186
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑒 ) ≠ 𝑀 ∨ ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑥 ∘f − 𝑒 ) ) ≠ 𝑁 ) ) |
188 |
62 88 187
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ) → ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) = ( 0g ‘ 𝑅 ) ) |
189 |
188
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( 0g ‘ 𝑅 ) ) ) |
190 |
189
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( 0g ‘ 𝑅 ) ) ) ) |
191 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
192 |
5 191
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
193 |
192
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → 𝑅 ∈ Mnd ) |
194 |
44
|
rabex |
⊢ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ∈ V |
195 |
41
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ∈ V ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
196 |
193 194 195
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
197 |
190 196
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
198 |
197
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
199 |
198
|
necon1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ 𝑐 ∘r ≤ 𝑥 } ↦ ( ( 𝑃 ‘ 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑄 ‘ ( 𝑥 ∘f − 𝑒 ) ) ) ) ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) |
200 |
27 199
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) |
201 |
200
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) |
202 |
6 7
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) |
203 |
2
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
204 |
4 5 203
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
205 |
10 3
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝑃 ∈ ( Base ‘ 𝑌 ) ∧ 𝑄 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑃 · 𝑄 ) ∈ ( Base ‘ 𝑌 ) ) |
206 |
204 13 14 205
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( Base ‘ 𝑌 ) ) |
207 |
1 2 10 41 12 4 5 202 206
|
ismhp3 |
⊢ ( 𝜑 → ( ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) ↔ ∀ 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝑅 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) ) |
208 |
201 207
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) ) |