Metamath Proof Explorer


Theorem mhpmulcl

Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024)

Ref Expression
Hypotheses mhpmulcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpmulcl.y 𝑌 = ( 𝐼 mPoly 𝑅 )
mhpmulcl.t · = ( .r𝑌 )
mhpmulcl.i ( 𝜑𝐼𝑉 )
mhpmulcl.r ( 𝜑𝑅 ∈ Ring )
mhpmulcl.m ( 𝜑𝑀 ∈ ℕ0 )
mhpmulcl.n ( 𝜑𝑁 ∈ ℕ0 )
mhpmulcl.p ( 𝜑𝑃 ∈ ( 𝐻𝑀 ) )
mhpmulcl.q ( 𝜑𝑄 ∈ ( 𝐻𝑁 ) )
Assertion mhpmulcl ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 mhpmulcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpmulcl.y 𝑌 = ( 𝐼 mPoly 𝑅 )
3 mhpmulcl.t · = ( .r𝑌 )
4 mhpmulcl.i ( 𝜑𝐼𝑉 )
5 mhpmulcl.r ( 𝜑𝑅 ∈ Ring )
6 mhpmulcl.m ( 𝜑𝑀 ∈ ℕ0 )
7 mhpmulcl.n ( 𝜑𝑁 ∈ ℕ0 )
8 mhpmulcl.p ( 𝜑𝑃 ∈ ( 𝐻𝑀 ) )
9 mhpmulcl.q ( 𝜑𝑄 ∈ ( 𝐻𝑁 ) )
10 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
11 eqid ( .r𝑅 ) = ( .r𝑅 )
12 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
13 1 2 10 4 5 6 8 mhpmpl ( 𝜑𝑃 ∈ ( Base ‘ 𝑌 ) )
14 1 2 10 4 5 7 9 mhpmpl ( 𝜑𝑄 ∈ ( Base ‘ 𝑌 ) )
15 2 10 11 3 12 13 14 mplmul ( 𝜑 → ( 𝑃 · 𝑄 ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) ) ) )
16 15 adantr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑃 · 𝑄 ) = ( 𝑑 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) ) ) )
17 breq2 ( 𝑑 = 𝑥 → ( 𝑐r𝑑𝑐r𝑥 ) )
18 17 rabbidv ( 𝑑 = 𝑥 → { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } = { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
19 fvoveq1 ( 𝑑 = 𝑥 → ( 𝑄 ‘ ( 𝑑f𝑒 ) ) = ( 𝑄 ‘ ( 𝑥f𝑒 ) ) )
20 19 oveq2d ( 𝑑 = 𝑥 → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) = ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) )
21 18 20 mpteq12dv ( 𝑑 = 𝑥 → ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) )
22 21 oveq2d ( 𝑑 = 𝑥 → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) )
23 22 adantl ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ 𝑑 = 𝑥 ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑑 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑑f𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) )
24 simpr ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
25 ovexd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) ∈ V )
26 16 23 24 25 fvmptd ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) )
27 26 neeq1d ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g𝑅 ) ↔ ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) ≠ ( 0g𝑅 ) ) )
28 simp-4l ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝜑 )
29 oveq2 ( 𝑐 = 𝑒 → ( ( ℂflds0 ) Σg 𝑐 ) = ( ( ℂflds0 ) Σg 𝑒 ) )
30 29 eqeq1d ( 𝑐 = 𝑒 → ( ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 ↔ ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ) )
31 30 necon3bbid ( 𝑐 = 𝑒 → ( ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 ↔ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) )
32 simplr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
33 elrabi ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } → 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
34 32 33 syl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
35 simpr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 )
36 31 34 35 elrabd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } )
37 notrab ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } ) = { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 }
38 36 37 eleqtrrdi ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑒 ∈ ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } ) )
39 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
40 2 39 10 12 13 mplelf ( 𝜑𝑃 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
41 eqid ( 0g𝑅 ) = ( 0g𝑅 )
42 1 41 12 4 5 6 8 mhpdeg ( 𝜑 → ( 𝑃 supp ( 0g𝑅 ) ) ⊆ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } )
43 ovex ( ℕ0m 𝐼 ) ∈ V
44 43 rabex { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V
45 44 a1i ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V )
46 fvexd ( 𝜑 → ( 0g𝑅 ) ∈ V )
47 40 42 45 46 suppssr ( ( 𝜑𝑒 ∈ ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑀 } ) ) → ( 𝑃𝑒 ) = ( 0g𝑅 ) )
48 28 38 47 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑃𝑒 ) = ( 0g𝑅 ) )
49 48 oveq1d ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( ( 0g𝑅 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) )
50 5 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑅 ∈ Ring )
51 14 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑄 ∈ ( Base ‘ 𝑌 ) )
52 2 39 10 12 51 mplelf ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑄 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
53 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
54 eqid { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } = { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 }
55 12 54 psrbagconcl ( ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
56 53 32 55 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
57 elrabi ( ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } → ( 𝑥f𝑒 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
58 56 57 syl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑥f𝑒 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
59 52 58 ffvelrnd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ∈ ( Base ‘ 𝑅 ) )
60 39 11 41 ringlz ( ( 𝑅 ∈ Ring ∧ ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g𝑅 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
61 50 59 60 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 0g𝑅 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
62 49 61 eqtrd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
63 simp-4l ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝜑 )
64 oveq2 ( 𝑐 = ( 𝑥f𝑒 ) → ( ( ℂflds0 ) Σg 𝑐 ) = ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) )
65 64 eqeq1d ( 𝑐 = ( 𝑥f𝑒 ) → ( ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 ↔ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) )
66 65 necon3bbid ( 𝑐 = ( 𝑥f𝑒 ) → ( ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 ↔ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) )
67 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
68 simplr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
69 67 68 55 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
70 69 57 syl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑥f𝑒 ) ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
71 simpr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 )
72 66 70 71 elrabd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑥f𝑒 ) ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } )
73 notrab ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } ) = { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ¬ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 }
74 72 73 eleqtrrdi ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑥f𝑒 ) ∈ ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } ) )
75 2 39 10 12 14 mplelf ( 𝜑𝑄 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
76 1 41 12 4 5 7 9 mhpdeg ( 𝜑 → ( 𝑄 supp ( 0g𝑅 ) ) ⊆ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } )
77 75 76 45 46 suppssr ( ( 𝜑 ∧ ( 𝑥f𝑒 ) ∈ ( { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∖ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑐 ) = 𝑁 } ) ) → ( 𝑄 ‘ ( 𝑥f𝑒 ) ) = ( 0g𝑅 ) )
78 63 74 77 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑄 ‘ ( 𝑥f𝑒 ) ) = ( 0g𝑅 ) )
79 78 oveq2d ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 0g𝑅 ) ) )
80 5 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑅 ∈ Ring )
81 13 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑃 ∈ ( Base ‘ 𝑌 ) )
82 2 39 10 12 81 mplelf ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑃 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
83 33 adantl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
84 83 adantr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
85 82 84 ffvelrnd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( 𝑃𝑒 ) ∈ ( Base ‘ 𝑅 ) )
86 39 11 41 ringrz ( ( 𝑅 ∈ Ring ∧ ( 𝑃𝑒 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
87 80 85 86 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
88 79 87 eqtrd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
89 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
90 eqid ( ℂflds0 ) = ( ℂflds0 )
91 90 submbas ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ ( ℂflds0 ) ) )
92 89 91 ax-mp 0 = ( Base ‘ ( ℂflds0 ) )
93 cnfld0 0 = ( 0g ‘ ℂfld )
94 90 93 subm0 ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂflds0 ) ) )
95 89 94 ax-mp 0 = ( 0g ‘ ( ℂflds0 ) )
96 nn0ex 0 ∈ V
97 cnfldadd + = ( +g ‘ ℂfld )
98 90 97 ressplusg ( ℕ0 ∈ V → + = ( +g ‘ ( ℂflds0 ) ) )
99 96 98 ax-mp + = ( +g ‘ ( ℂflds0 ) )
100 cnring fld ∈ Ring
101 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
102 100 101 ax-mp fld ∈ CMnd
103 90 submcmn ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂflds0 ) ∈ CMnd )
104 102 89 103 mp2an ( ℂflds0 ) ∈ CMnd
105 104 a1i ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ℂflds0 ) ∈ CMnd )
106 4 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝐼𝑉 )
107 12 psrbagf ( 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑒 : 𝐼 ⟶ ℕ0 )
108 83 107 syl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 : 𝐼 ⟶ ℕ0 )
109 simpllr ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
110 12 psrbagf ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑥 : 𝐼 ⟶ ℕ0 )
111 109 110 syl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 : 𝐼 ⟶ ℕ0 )
112 111 ffnd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 Fn 𝐼 )
113 108 ffnd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 Fn 𝐼 )
114 inidm ( 𝐼𝐼 ) = 𝐼
115 eqidd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑥𝑖 ) = ( 𝑥𝑖 ) )
116 eqidd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑒𝑖 ) = ( 𝑒𝑖 ) )
117 112 113 106 106 114 115 116 offval ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) = ( 𝑖𝐼 ↦ ( ( 𝑥𝑖 ) − ( 𝑒𝑖 ) ) ) )
118 simpl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) )
119 simplr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } )
120 breq1 ( 𝑐 = 𝑒 → ( 𝑐r𝑥𝑒r𝑥 ) )
121 120 elrab ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↔ ( 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∧ 𝑒r𝑥 ) )
122 121 simprbi ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } → 𝑒r𝑥 )
123 119 122 syl ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → 𝑒r𝑥 )
124 simpr ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → 𝑖𝐼 )
125 113 112 106 106 114 116 115 ofrval ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑒r𝑥𝑖𝐼 ) → ( 𝑒𝑖 ) ≤ ( 𝑥𝑖 ) )
126 118 123 124 125 syl3anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑒𝑖 ) ≤ ( 𝑥𝑖 ) )
127 108 ffvelrnda ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑒𝑖 ) ∈ ℕ0 )
128 111 ffvelrnda ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( 𝑥𝑖 ) ∈ ℕ0 )
129 nn0sub ( ( ( 𝑒𝑖 ) ∈ ℕ0 ∧ ( 𝑥𝑖 ) ∈ ℕ0 ) → ( ( 𝑒𝑖 ) ≤ ( 𝑥𝑖 ) ↔ ( ( 𝑥𝑖 ) − ( 𝑒𝑖 ) ) ∈ ℕ0 ) )
130 127 128 129 syl2anc ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( ( 𝑒𝑖 ) ≤ ( 𝑥𝑖 ) ↔ ( ( 𝑥𝑖 ) − ( 𝑒𝑖 ) ) ∈ ℕ0 ) )
131 126 130 mpbid ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑖𝐼 ) → ( ( 𝑥𝑖 ) − ( 𝑒𝑖 ) ) ∈ ℕ0 )
132 117 131 fmpt3d ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) : 𝐼 ⟶ ℕ0 )
133 108 ffund ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → Fun 𝑒 )
134 c0ex 0 ∈ V
135 106 134 jctir ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝐼𝑉 ∧ 0 ∈ V ) )
136 frnsuppeq ( ( 𝐼𝑉 ∧ 0 ∈ V ) → ( 𝑒 : 𝐼 ⟶ ℕ0 → ( 𝑒 supp 0 ) = ( 𝑒 “ ( ℕ0 ∖ { 0 } ) ) ) )
137 135 108 136 sylc ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 supp 0 ) = ( 𝑒 “ ( ℕ0 ∖ { 0 } ) ) )
138 dfn2 ℕ = ( ℕ0 ∖ { 0 } )
139 138 imaeq2i ( 𝑒 “ ℕ ) = ( 𝑒 “ ( ℕ0 ∖ { 0 } ) )
140 137 139 eqtr4di ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 supp 0 ) = ( 𝑒 “ ℕ ) )
141 12 psrbag ( 𝐼𝑉 → ( 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↔ ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( 𝑒 “ ℕ ) ∈ Fin ) ) )
142 106 141 syl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ↔ ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( 𝑒 “ ℕ ) ∈ Fin ) ) )
143 83 142 mpbid ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 : 𝐼 ⟶ ℕ0 ∧ ( 𝑒 “ ℕ ) ∈ Fin ) )
144 143 simprd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 “ ℕ ) ∈ Fin )
145 140 144 eqeltrd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 supp 0 ) ∈ Fin )
146 83 elexd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 ∈ V )
147 isfsupp ( ( 𝑒 ∈ V ∧ 0 ∈ V ) → ( 𝑒 finSupp 0 ↔ ( Fun 𝑒 ∧ ( 𝑒 supp 0 ) ∈ Fin ) ) )
148 146 134 147 sylancl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒 finSupp 0 ↔ ( Fun 𝑒 ∧ ( 𝑒 supp 0 ) ∈ Fin ) ) )
149 133 145 148 mpbir2and ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 finSupp 0 )
150 112 113 106 106 offun ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → Fun ( 𝑥f𝑒 ) )
151 12 psrbagfsupp ( 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } → 𝑥 finSupp 0 )
152 109 151 syl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 finSupp 0 )
153 152 149 fsuppunfi ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑥 supp 0 ) ∪ ( 𝑒 supp 0 ) ) ∈ Fin )
154 0nn0 0 ∈ ℕ0
155 154 a1i ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 0 ∈ ℕ0 )
156 0m0e0 ( 0 − 0 ) = 0
157 156 a1i ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 0 − 0 ) = 0 )
158 106 155 111 108 157 suppofssd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑥f𝑒 ) supp 0 ) ⊆ ( ( 𝑥 supp 0 ) ∪ ( 𝑒 supp 0 ) ) )
159 153 158 ssfid ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑥f𝑒 ) supp 0 ) ∈ Fin )
160 ovexd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) ∈ V )
161 isfsupp ( ( ( 𝑥f𝑒 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥f𝑒 ) finSupp 0 ↔ ( Fun ( 𝑥f𝑒 ) ∧ ( ( 𝑥f𝑒 ) supp 0 ) ∈ Fin ) ) )
162 160 134 161 sylancl ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑥f𝑒 ) finSupp 0 ↔ ( Fun ( 𝑥f𝑒 ) ∧ ( ( 𝑥f𝑒 ) supp 0 ) ∈ Fin ) ) )
163 150 159 162 mpbir2and ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) finSupp 0 )
164 92 95 99 105 106 108 132 149 163 gsumadd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ℂflds0 ) Σg ( 𝑒f + ( 𝑥f𝑒 ) ) ) = ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) )
165 108 ffvelrnda ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑒𝑏 ) ∈ ℕ0 )
166 165 nn0cnd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑒𝑏 ) ∈ ℂ )
167 111 ffvelrnda ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑥𝑏 ) ∈ ℕ0 )
168 167 nn0cnd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑥𝑏 ) ∈ ℂ )
169 166 168 pncan3d ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( ( 𝑒𝑏 ) + ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ) = ( 𝑥𝑏 ) )
170 169 mpteq2dva ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑏𝐼 ↦ ( ( 𝑒𝑏 ) + ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ) ) = ( 𝑏𝐼 ↦ ( 𝑥𝑏 ) ) )
171 fvexd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( 𝑒𝑏 ) ∈ V )
172 ovexd ( ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) ∧ 𝑏𝐼 ) → ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ∈ V )
173 108 feqmptd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑒 = ( 𝑏𝐼 ↦ ( 𝑒𝑏 ) ) )
174 111 feqmptd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → 𝑥 = ( 𝑏𝐼 ↦ ( 𝑥𝑏 ) ) )
175 106 167 165 174 173 offval2 ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑥f𝑒 ) = ( 𝑏𝐼 ↦ ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ) )
176 106 171 172 173 175 offval2 ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒f + ( 𝑥f𝑒 ) ) = ( 𝑏𝐼 ↦ ( ( 𝑒𝑏 ) + ( ( 𝑥𝑏 ) − ( 𝑒𝑏 ) ) ) ) )
177 170 176 174 3eqtr4d ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( 𝑒f + ( 𝑥f𝑒 ) ) = 𝑥 )
178 177 oveq2d ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ℂflds0 ) Σg ( 𝑒f + ( 𝑥f𝑒 ) ) ) = ( ( ℂflds0 ) Σg 𝑥 ) )
179 164 178 eqtr3d ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) = ( ( ℂflds0 ) Σg 𝑥 ) )
180 simplr ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) )
181 179 180 eqnetrd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) ≠ ( 𝑀 + 𝑁 ) )
182 oveq12 ( ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) → ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) = ( 𝑀 + 𝑁 ) )
183 182 a1i ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) → ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) = ( 𝑀 + 𝑁 ) ) )
184 183 necon3ad ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ( ℂflds0 ) Σg 𝑒 ) + ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ) ≠ ( 𝑀 + 𝑁 ) → ¬ ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) ) )
185 181 184 mpd ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ¬ ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) )
186 neorian ( ( ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ∨ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) ↔ ¬ ( ( ( ℂflds0 ) Σg 𝑒 ) = 𝑀 ∧ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) = 𝑁 ) )
187 185 186 sylibr ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( ( ℂflds0 ) Σg 𝑒 ) ≠ 𝑀 ∨ ( ( ℂflds0 ) Σg ( 𝑥f𝑒 ) ) ≠ 𝑁 ) )
188 62 88 187 mpjaodan ( ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) ∧ 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ) → ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) = ( 0g𝑅 ) )
189 188 mpteq2dva ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) = ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( 0g𝑅 ) ) )
190 189 oveq2d ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( 0g𝑅 ) ) ) )
191 ringmnd ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd )
192 5 191 syl ( 𝜑𝑅 ∈ Mnd )
193 192 ad2antrr ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → 𝑅 ∈ Mnd )
194 44 rabex { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ∈ V
195 41 gsumz ( ( 𝑅 ∈ Mnd ∧ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ∈ V ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( 0g𝑅 ) ) ) = ( 0g𝑅 ) )
196 193 194 195 sylancl ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( 0g𝑅 ) ) ) = ( 0g𝑅 ) )
197 190 196 eqtrd ( ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) ∧ ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) = ( 0g𝑅 ) )
198 197 ex ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( ℂflds0 ) Σg 𝑥 ) ≠ ( 𝑀 + 𝑁 ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) = ( 0g𝑅 ) ) )
199 198 necon1d ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( 𝑒 ∈ { 𝑐 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ 𝑐r𝑥 } ↦ ( ( 𝑃𝑒 ) ( .r𝑅 ) ( 𝑄 ‘ ( 𝑥f𝑒 ) ) ) ) ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) )
200 27 199 sylbid ( ( 𝜑𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ) → ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) )
201 200 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) )
202 6 7 nn0addcld ( 𝜑 → ( 𝑀 + 𝑁 ) ∈ ℕ0 )
203 2 mplring ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑌 ∈ Ring )
204 4 5 203 syl2anc ( 𝜑𝑌 ∈ Ring )
205 10 3 ringcl ( ( 𝑌 ∈ Ring ∧ 𝑃 ∈ ( Base ‘ 𝑌 ) ∧ 𝑄 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑃 · 𝑄 ) ∈ ( Base ‘ 𝑌 ) )
206 204 13 14 205 syl3anc ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( Base ‘ 𝑌 ) )
207 1 2 10 41 12 4 5 202 206 ismhp3 ( 𝜑 → ( ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) ↔ ∀ 𝑥 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( ( 𝑃 · 𝑄 ) ‘ 𝑥 ) ≠ ( 0g𝑅 ) → ( ( ℂflds0 ) Σg 𝑥 ) = ( 𝑀 + 𝑁 ) ) ) )
208 201 207 mpbird ( 𝜑 → ( 𝑃 · 𝑄 ) ∈ ( 𝐻 ‘ ( 𝑀 + 𝑁 ) ) )