Metamath Proof Explorer


Theorem mhpdeg

Description: All nonzero terms of a homogeneous polynomial have degree N . (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpdeg.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpdeg.0 0 = ( 0g𝑅 )
mhpdeg.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mhpdeg.i ( 𝜑𝐼𝑉 )
mhpdeg.r ( 𝜑𝑅𝑊 )
mhpdeg.n ( 𝜑𝑁 ∈ ℕ0 )
mhpdeg.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
Assertion mhpdeg ( 𝜑 → ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )

Proof

Step Hyp Ref Expression
1 mhpdeg.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpdeg.0 0 = ( 0g𝑅 )
3 mhpdeg.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
4 mhpdeg.i ( 𝜑𝐼𝑉 )
5 mhpdeg.r ( 𝜑𝑅𝑊 )
6 mhpdeg.n ( 𝜑𝑁 ∈ ℕ0 )
7 mhpdeg.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
8 eqid ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 )
9 eqid ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
10 1 8 9 2 3 4 5 6 ismhp ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ) )
11 10 simplbda ( ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) ) → ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )
12 7 11 mpdan ( 𝜑 → ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )