Step |
Hyp |
Ref |
Expression |
1 |
|
mhp0cl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhp0cl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
mhp0cl.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
4 |
|
mhp0cl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
mhp0cl.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
6 |
|
mhp0cl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) = ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) |
10 |
7 3 2 9 4 5
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) = ( 𝐷 × { 0 } ) ) |
11 |
7
|
mplgrp |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp ) → ( 𝐼 mPoly 𝑅 ) ∈ Grp ) |
12 |
4 5 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 mPoly 𝑅 ) ∈ Grp ) |
13 |
8 9
|
grpidcl |
⊢ ( ( 𝐼 mPoly 𝑅 ) ∈ Grp → ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
15 |
10 14
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
16 |
|
fczsupp0 |
⊢ ( ( 𝐷 × { 0 } ) supp 0 ) = ∅ |
17 |
|
0ss |
⊢ ∅ ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
18 |
16 17
|
eqsstri |
⊢ ( ( 𝐷 × { 0 } ) supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
20 |
1 7 8 2 3 4 5 6 15 19
|
ismhp2 |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ ( 𝐻 ‘ 𝑁 ) ) |