| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdgr |
⊢ deg |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cply |
⊢ Poly |
| 3 |
|
cc |
⊢ ℂ |
| 4 |
3 2
|
cfv |
⊢ ( Poly ‘ ℂ ) |
| 5 |
|
ccoe |
⊢ coeff |
| 6 |
1
|
cv |
⊢ 𝑓 |
| 7 |
6 5
|
cfv |
⊢ ( coeff ‘ 𝑓 ) |
| 8 |
7
|
ccnv |
⊢ ◡ ( coeff ‘ 𝑓 ) |
| 9 |
|
cc0 |
⊢ 0 |
| 10 |
9
|
csn |
⊢ { 0 } |
| 11 |
3 10
|
cdif |
⊢ ( ℂ ∖ { 0 } ) |
| 12 |
8 11
|
cima |
⊢ ( ◡ ( coeff ‘ 𝑓 ) “ ( ℂ ∖ { 0 } ) ) |
| 13 |
|
cn0 |
⊢ ℕ0 |
| 14 |
|
clt |
⊢ < |
| 15 |
12 13 14
|
csup |
⊢ sup ( ( ◡ ( coeff ‘ 𝑓 ) “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) |
| 16 |
1 4 15
|
cmpt |
⊢ ( 𝑓 ∈ ( Poly ‘ ℂ ) ↦ sup ( ( ◡ ( coeff ‘ 𝑓 ) “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
| 17 |
0 16
|
wceq |
⊢ deg = ( 𝑓 ∈ ( Poly ‘ ℂ ) ↦ sup ( ( ◡ ( coeff ‘ 𝑓 ) “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |