Description: Define the degree of a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-dgr | |- deg = ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cdgr | |- deg |
|
1 | vf | |- f |
|
2 | cply | |- Poly |
|
3 | cc | |- CC |
|
4 | 3 2 | cfv | |- ( Poly ` CC ) |
5 | ccoe | |- coeff |
|
6 | 1 | cv | |- f |
7 | 6 5 | cfv | |- ( coeff ` f ) |
8 | 7 | ccnv | |- `' ( coeff ` f ) |
9 | cc0 | |- 0 |
|
10 | 9 | csn | |- { 0 } |
11 | 3 10 | cdif | |- ( CC \ { 0 } ) |
12 | 8 11 | cima | |- ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) |
13 | cn0 | |- NN0 |
|
14 | clt | |- < |
|
15 | 12 13 14 | csup | |- sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) |
16 | 1 4 15 | cmpt | |- ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) ) |
17 | 0 16 | wceq | |- deg = ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) ) |