Description: Define the degree of a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dgr | |- deg = ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdgr | |- deg |
|
| 1 | vf | |- f |
|
| 2 | cply | |- Poly |
|
| 3 | cc | |- CC |
|
| 4 | 3 2 | cfv | |- ( Poly ` CC ) |
| 5 | ccoe | |- coeff |
|
| 6 | 1 | cv | |- f |
| 7 | 6 5 | cfv | |- ( coeff ` f ) |
| 8 | 7 | ccnv | |- `' ( coeff ` f ) |
| 9 | cc0 | |- 0 |
|
| 10 | 9 | csn | |- { 0 } |
| 11 | 3 10 | cdif | |- ( CC \ { 0 } ) |
| 12 | 8 11 | cima | |- ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) |
| 13 | cn0 | |- NN0 |
|
| 14 | clt | |- < |
|
| 15 | 12 13 14 | csup | |- sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) |
| 16 | 1 4 15 | cmpt | |- ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) ) |
| 17 | 0 16 | wceq | |- deg = ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) ) |