Metamath Proof Explorer


Definition df-dgr

Description: Define the degree of a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion df-dgr
|- deg = ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdgr
 |-  deg
1 vf
 |-  f
2 cply
 |-  Poly
3 cc
 |-  CC
4 3 2 cfv
 |-  ( Poly ` CC )
5 ccoe
 |-  coeff
6 1 cv
 |-  f
7 6 5 cfv
 |-  ( coeff ` f )
8 7 ccnv
 |-  `' ( coeff ` f )
9 cc0
 |-  0
10 9 csn
 |-  { 0 }
11 3 10 cdif
 |-  ( CC \ { 0 } )
12 8 11 cima
 |-  ( `' ( coeff ` f ) " ( CC \ { 0 } ) )
13 cn0
 |-  NN0
14 clt
 |-  <
15 12 13 14 csup
 |-  sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < )
16 1 4 15 cmpt
 |-  ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) )
17 0 16 wceq
 |-  deg = ( f e. ( Poly ` CC ) |-> sup ( ( `' ( coeff ` f ) " ( CC \ { 0 } ) ) , NN0 , < ) )