Step |
Hyp |
Ref |
Expression |
1 |
|
mhpmulcl.h |
|
2 |
|
mhpmulcl.y |
|
3 |
|
mhpmulcl.t |
|
4 |
|
mhpmulcl.i |
|
5 |
|
mhpmulcl.r |
|
6 |
|
mhpmulcl.m |
|
7 |
|
mhpmulcl.n |
|
8 |
|
mhpmulcl.p |
|
9 |
|
mhpmulcl.q |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 2 10 4 5 6 8
|
mhpmpl |
|
14 |
1 2 10 4 5 7 9
|
mhpmpl |
|
15 |
2 10 11 3 12 13 14
|
mplmul |
|
16 |
15
|
adantr |
|
17 |
|
breq2 |
|
18 |
17
|
rabbidv |
|
19 |
|
fvoveq1 |
|
20 |
19
|
oveq2d |
|
21 |
18 20
|
mpteq12dv |
|
22 |
21
|
oveq2d |
|
23 |
22
|
adantl |
|
24 |
|
simpr |
|
25 |
|
ovexd |
|
26 |
16 23 24 25
|
fvmptd |
|
27 |
26
|
neeq1d |
|
28 |
|
simp-4l |
|
29 |
|
oveq2 |
|
30 |
29
|
eqeq1d |
|
31 |
30
|
necon3bbid |
|
32 |
|
simplr |
|
33 |
|
elrabi |
|
34 |
32 33
|
syl |
|
35 |
|
simpr |
|
36 |
31 34 35
|
elrabd |
|
37 |
|
notrab |
|
38 |
36 37
|
eleqtrrdi |
|
39 |
|
eqid |
|
40 |
2 39 10 12 13
|
mplelf |
|
41 |
|
eqid |
|
42 |
1 41 12 4 5 6 8
|
mhpdeg |
|
43 |
|
ovex |
|
44 |
43
|
rabex |
|
45 |
44
|
a1i |
|
46 |
|
fvexd |
|
47 |
40 42 45 46
|
suppssr |
|
48 |
28 38 47
|
syl2anc |
|
49 |
48
|
oveq1d |
|
50 |
5
|
ad4antr |
|
51 |
14
|
ad4antr |
|
52 |
2 39 10 12 51
|
mplelf |
|
53 |
|
simp-4r |
|
54 |
|
eqid |
|
55 |
12 54
|
psrbagconcl |
|
56 |
53 32 55
|
syl2anc |
|
57 |
|
elrabi |
|
58 |
56 57
|
syl |
|
59 |
52 58
|
ffvelrnd |
|
60 |
39 11 41
|
ringlz |
|
61 |
50 59 60
|
syl2anc |
|
62 |
49 61
|
eqtrd |
|
63 |
|
simp-4l |
|
64 |
|
oveq2 |
|
65 |
64
|
eqeq1d |
|
66 |
65
|
necon3bbid |
|
67 |
|
simp-4r |
|
68 |
|
simplr |
|
69 |
67 68 55
|
syl2anc |
|
70 |
69 57
|
syl |
|
71 |
|
simpr |
|
72 |
66 70 71
|
elrabd |
|
73 |
|
notrab |
|
74 |
72 73
|
eleqtrrdi |
|
75 |
2 39 10 12 14
|
mplelf |
|
76 |
1 41 12 4 5 7 9
|
mhpdeg |
|
77 |
75 76 45 46
|
suppssr |
|
78 |
63 74 77
|
syl2anc |
|
79 |
78
|
oveq2d |
|
80 |
5
|
ad4antr |
|
81 |
13
|
ad4antr |
|
82 |
2 39 10 12 81
|
mplelf |
|
83 |
33
|
adantl |
|
84 |
83
|
adantr |
|
85 |
82 84
|
ffvelrnd |
|
86 |
39 11 41
|
ringrz |
|
87 |
80 85 86
|
syl2anc |
|
88 |
79 87
|
eqtrd |
|
89 |
|
nn0subm |
|
90 |
|
eqid |
|
91 |
90
|
submbas |
|
92 |
89 91
|
ax-mp |
|
93 |
|
cnfld0 |
|
94 |
90 93
|
subm0 |
|
95 |
89 94
|
ax-mp |
|
96 |
|
nn0ex |
|
97 |
|
cnfldadd |
|
98 |
90 97
|
ressplusg |
|
99 |
96 98
|
ax-mp |
|
100 |
|
cnring |
|
101 |
|
ringcmn |
|
102 |
100 101
|
ax-mp |
|
103 |
90
|
submcmn |
|
104 |
102 89 103
|
mp2an |
|
105 |
104
|
a1i |
|
106 |
4
|
ad3antrrr |
|
107 |
12
|
psrbagf |
|
108 |
83 107
|
syl |
|
109 |
|
simpllr |
|
110 |
12
|
psrbagf |
|
111 |
109 110
|
syl |
|
112 |
111
|
ffnd |
|
113 |
108
|
ffnd |
|
114 |
|
inidm |
|
115 |
|
eqidd |
|
116 |
|
eqidd |
|
117 |
112 113 106 106 114 115 116
|
offval |
|
118 |
|
simpl |
|
119 |
|
simplr |
|
120 |
|
breq1 |
|
121 |
120
|
elrab |
|
122 |
121
|
simprbi |
|
123 |
119 122
|
syl |
|
124 |
|
simpr |
|
125 |
113 112 106 106 114 116 115
|
ofrval |
|
126 |
118 123 124 125
|
syl3anc |
|
127 |
108
|
ffvelrnda |
|
128 |
111
|
ffvelrnda |
|
129 |
|
nn0sub |
|
130 |
127 128 129
|
syl2anc |
|
131 |
126 130
|
mpbid |
|
132 |
117 131
|
fmpt3d |
|
133 |
108
|
ffund |
|
134 |
|
c0ex |
|
135 |
106 134
|
jctir |
|
136 |
|
frnsuppeq |
|
137 |
135 108 136
|
sylc |
|
138 |
|
dfn2 |
|
139 |
138
|
imaeq2i |
|
140 |
137 139
|
eqtr4di |
|
141 |
12
|
psrbag |
|
142 |
106 141
|
syl |
|
143 |
83 142
|
mpbid |
|
144 |
143
|
simprd |
|
145 |
140 144
|
eqeltrd |
|
146 |
83
|
elexd |
|
147 |
|
isfsupp |
|
148 |
146 134 147
|
sylancl |
|
149 |
133 145 148
|
mpbir2and |
|
150 |
112 113 106 106
|
offun |
|
151 |
12
|
psrbagfsupp |
|
152 |
109 151
|
syl |
|
153 |
152 149
|
fsuppunfi |
|
154 |
|
0nn0 |
|
155 |
154
|
a1i |
|
156 |
|
0m0e0 |
|
157 |
156
|
a1i |
|
158 |
106 155 111 108 157
|
suppofssd |
|
159 |
153 158
|
ssfid |
|
160 |
|
ovexd |
|
161 |
|
isfsupp |
|
162 |
160 134 161
|
sylancl |
|
163 |
150 159 162
|
mpbir2and |
|
164 |
92 95 99 105 106 108 132 149 163
|
gsumadd |
|
165 |
108
|
ffvelrnda |
|
166 |
165
|
nn0cnd |
|
167 |
111
|
ffvelrnda |
|
168 |
167
|
nn0cnd |
|
169 |
166 168
|
pncan3d |
|
170 |
169
|
mpteq2dva |
|
171 |
|
fvexd |
|
172 |
|
ovexd |
|
173 |
108
|
feqmptd |
|
174 |
111
|
feqmptd |
|
175 |
106 167 165 174 173
|
offval2 |
|
176 |
106 171 172 173 175
|
offval2 |
|
177 |
170 176 174
|
3eqtr4d |
|
178 |
177
|
oveq2d |
|
179 |
164 178
|
eqtr3d |
|
180 |
|
simplr |
|
181 |
179 180
|
eqnetrd |
|
182 |
|
oveq12 |
|
183 |
182
|
a1i |
|
184 |
183
|
necon3ad |
|
185 |
181 184
|
mpd |
|
186 |
|
neorian |
|
187 |
185 186
|
sylibr |
|
188 |
62 88 187
|
mpjaodan |
|
189 |
188
|
mpteq2dva |
|
190 |
189
|
oveq2d |
|
191 |
|
ringmnd |
|
192 |
5 191
|
syl |
|
193 |
192
|
ad2antrr |
|
194 |
44
|
rabex |
|
195 |
41
|
gsumz |
|
196 |
193 194 195
|
sylancl |
|
197 |
190 196
|
eqtrd |
|
198 |
197
|
ex |
|
199 |
198
|
necon1d |
|
200 |
27 199
|
sylbid |
|
201 |
200
|
ralrimiva |
|
202 |
6 7
|
nn0addcld |
|
203 |
2
|
mplring |
|
204 |
4 5 203
|
syl2anc |
|
205 |
10 3
|
ringcl |
|
206 |
204 13 14 205
|
syl3anc |
|
207 |
1 2 10 41 12 4 5 202 206
|
ismhp3 |
|
208 |
201 207
|
mpbird |
|