| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhpmulcl.h |
|
| 2 |
|
mhpmulcl.y |
|
| 3 |
|
mhpmulcl.t |
|
| 4 |
|
mhpmulcl.r |
|
| 5 |
|
mhpmulcl.p |
|
| 6 |
|
mhpmulcl.q |
|
| 7 |
|
breq2 |
|
| 8 |
7
|
rabbidv |
|
| 9 |
|
fvoveq1 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
8 10
|
mpteq12dv |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
1 2 13 5
|
mhpmpl |
|
| 17 |
1 2 13 6
|
mhpmpl |
|
| 18 |
2 13 14 3 15 16 17
|
mplmul |
|
| 19 |
18
|
adantr |
|
| 20 |
|
simpr |
|
| 21 |
|
ovexd |
|
| 22 |
12 19 20 21
|
fvmptd4 |
|
| 23 |
22
|
neeq1d |
|
| 24 |
|
simp-4l |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
eqeq1d |
|
| 27 |
26
|
necon3bbid |
|
| 28 |
|
elrabi |
|
| 29 |
28
|
ad2antlr |
|
| 30 |
|
simpr |
|
| 31 |
27 29 30
|
elrabd |
|
| 32 |
|
notrab |
|
| 33 |
31 32
|
eleqtrrdi |
|
| 34 |
|
eqid |
|
| 35 |
2 34 13 15 16
|
mplelf |
|
| 36 |
|
eqid |
|
| 37 |
1 36 15 5
|
mhpdeg |
|
| 38 |
|
fvexd |
|
| 39 |
35 37 5 38
|
suppssrg |
|
| 40 |
24 33 39
|
syl2anc |
|
| 41 |
40
|
oveq1d |
|
| 42 |
4
|
ad4antr |
|
| 43 |
17
|
ad4antr |
|
| 44 |
2 34 13 15 43
|
mplelf |
|
| 45 |
|
eqid |
|
| 46 |
15 45
|
psrbagconcl |
|
| 47 |
46
|
ad5ant24 |
|
| 48 |
|
elrabi |
|
| 49 |
47 48
|
syl |
|
| 50 |
44 49
|
ffvelcdmd |
|
| 51 |
34 14 36 42 50
|
ringlzd |
|
| 52 |
41 51
|
eqtrd |
|
| 53 |
|
simp-4l |
|
| 54 |
|
oveq2 |
|
| 55 |
54
|
eqeq1d |
|
| 56 |
55
|
necon3bbid |
|
| 57 |
46
|
ad5ant24 |
|
| 58 |
57 48
|
syl |
|
| 59 |
|
simpr |
|
| 60 |
56 58 59
|
elrabd |
|
| 61 |
|
notrab |
|
| 62 |
60 61
|
eleqtrrdi |
|
| 63 |
2 34 13 15 17
|
mplelf |
|
| 64 |
1 36 15 6
|
mhpdeg |
|
| 65 |
63 64 6 38
|
suppssrg |
|
| 66 |
53 62 65
|
syl2anc |
|
| 67 |
66
|
oveq2d |
|
| 68 |
4
|
ad4antr |
|
| 69 |
16
|
ad4antr |
|
| 70 |
2 34 13 15 69
|
mplelf |
|
| 71 |
28
|
ad2antlr |
|
| 72 |
70 71
|
ffvelcdmd |
|
| 73 |
34 14 36 68 72
|
ringrzd |
|
| 74 |
67 73
|
eqtrd |
|
| 75 |
|
nn0subm |
|
| 76 |
|
eqid |
|
| 77 |
76
|
submbas |
|
| 78 |
75 77
|
ax-mp |
|
| 79 |
|
cnfld0 |
|
| 80 |
76 79
|
subm0 |
|
| 81 |
75 80
|
ax-mp |
|
| 82 |
|
nn0ex |
|
| 83 |
|
cnfldadd |
|
| 84 |
76 83
|
ressplusg |
|
| 85 |
82 84
|
ax-mp |
|
| 86 |
|
cnring |
|
| 87 |
|
ringcmn |
|
| 88 |
86 87
|
ax-mp |
|
| 89 |
76
|
submcmn |
|
| 90 |
88 75 89
|
mp2an |
|
| 91 |
90
|
a1i |
|
| 92 |
|
reldmmhp |
|
| 93 |
92 1 5
|
elfvov1 |
|
| 94 |
93
|
ad3antrrr |
|
| 95 |
28
|
adantl |
|
| 96 |
15
|
psrbagf |
|
| 97 |
95 96
|
syl |
|
| 98 |
15
|
psrbagf |
|
| 99 |
98
|
ad3antlr |
|
| 100 |
99
|
ffnd |
|
| 101 |
97
|
ffnd |
|
| 102 |
|
inidm |
|
| 103 |
|
eqidd |
|
| 104 |
|
eqidd |
|
| 105 |
100 101 94 94 102 103 104
|
offval |
|
| 106 |
|
simpl |
|
| 107 |
|
breq1 |
|
| 108 |
107
|
elrab |
|
| 109 |
108
|
simprbi |
|
| 110 |
109
|
ad2antlr |
|
| 111 |
|
simpr |
|
| 112 |
101 100 94 94 102 104 103
|
ofrval |
|
| 113 |
106 110 111 112
|
syl3anc |
|
| 114 |
97
|
ffvelcdmda |
|
| 115 |
99
|
ffvelcdmda |
|
| 116 |
|
nn0sub |
|
| 117 |
114 115 116
|
syl2anc |
|
| 118 |
113 117
|
mpbid |
|
| 119 |
105 118
|
fmpt3d |
|
| 120 |
97
|
ffund |
|
| 121 |
|
c0ex |
|
| 122 |
94 121
|
jctir |
|
| 123 |
|
fsuppeq |
|
| 124 |
122 97 123
|
sylc |
|
| 125 |
|
dfn2 |
|
| 126 |
125
|
imaeq2i |
|
| 127 |
124 126
|
eqtr4di |
|
| 128 |
15
|
psrbag |
|
| 129 |
94 128
|
syl |
|
| 130 |
95 129
|
mpbid |
|
| 131 |
130
|
simprd |
|
| 132 |
127 131
|
eqeltrd |
|
| 133 |
95
|
elexd |
|
| 134 |
|
isfsupp |
|
| 135 |
133 121 134
|
sylancl |
|
| 136 |
120 132 135
|
mpbir2and |
|
| 137 |
|
ovexd |
|
| 138 |
|
0nn0 |
|
| 139 |
138
|
a1i |
|
| 140 |
100 101 94 94
|
offun |
|
| 141 |
15
|
psrbagfsupp |
|
| 142 |
141
|
ad3antlr |
|
| 143 |
142 136
|
fsuppunfi |
|
| 144 |
|
0m0e0 |
|
| 145 |
144
|
a1i |
|
| 146 |
94 139 99 97 145
|
suppofssd |
|
| 147 |
143 146
|
ssfid |
|
| 148 |
137 139 140 147
|
isfsuppd |
|
| 149 |
78 81 85 91 94 97 119 136 148
|
gsumadd |
|
| 150 |
97
|
ffvelcdmda |
|
| 151 |
150
|
nn0cnd |
|
| 152 |
99
|
ffvelcdmda |
|
| 153 |
152
|
nn0cnd |
|
| 154 |
151 153
|
pncan3d |
|
| 155 |
154
|
mpteq2dva |
|
| 156 |
|
fvexd |
|
| 157 |
|
ovexd |
|
| 158 |
97
|
feqmptd |
|
| 159 |
99
|
feqmptd |
|
| 160 |
94 152 150 159 158
|
offval2 |
|
| 161 |
94 156 157 158 160
|
offval2 |
|
| 162 |
155 161 159
|
3eqtr4d |
|
| 163 |
162
|
oveq2d |
|
| 164 |
149 163
|
eqtr3d |
|
| 165 |
|
simplr |
|
| 166 |
164 165
|
eqnetrd |
|
| 167 |
|
oveq12 |
|
| 168 |
167
|
a1i |
|
| 169 |
168
|
necon3ad |
|
| 170 |
166 169
|
mpd |
|
| 171 |
|
neorian |
|
| 172 |
170 171
|
sylibr |
|
| 173 |
52 74 172
|
mpjaodan |
|
| 174 |
173
|
mpteq2dva |
|
| 175 |
174
|
oveq2d |
|
| 176 |
|
ringmnd |
|
| 177 |
4 176
|
syl |
|
| 178 |
177
|
ad2antrr |
|
| 179 |
|
ovex |
|
| 180 |
179
|
rabex |
|
| 181 |
180
|
rabex |
|
| 182 |
36
|
gsumz |
|
| 183 |
178 181 182
|
sylancl |
|
| 184 |
175 183
|
eqtrd |
|
| 185 |
184
|
ex |
|
| 186 |
185
|
necon1d |
|
| 187 |
23 186
|
sylbid |
|
| 188 |
187
|
ralrimiva |
|
| 189 |
1 5
|
mhprcl |
|
| 190 |
1 6
|
mhprcl |
|
| 191 |
189 190
|
nn0addcld |
|
| 192 |
2 93 4
|
mplringd |
|
| 193 |
13 3 192 16 17
|
ringcld |
|
| 194 |
1 2 13 36 15 191 193
|
ismhp3 |
|
| 195 |
188 194
|
mpbird |
|