| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhppwdeg.h |
|
| 2 |
|
mhppwdeg.p |
|
| 3 |
|
mhppwdeg.t |
|
| 4 |
|
mhppwdeg.e |
|
| 5 |
|
mhppwdeg.r |
|
| 6 |
|
mhppwdeg.n |
|
| 7 |
|
mhppwdeg.x |
|
| 8 |
|
oveq1 |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
fveq2d |
|
| 11 |
8 10
|
eleq12d |
|
| 12 |
|
oveq1 |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
fveq2d |
|
| 15 |
12 14
|
eleq12d |
|
| 16 |
|
oveq1 |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
fveq2d |
|
| 19 |
16 18
|
eleq12d |
|
| 20 |
|
oveq1 |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
20 22
|
eleq12d |
|
| 24 |
|
reldmmhp |
|
| 25 |
24 1 7
|
elfvov1 |
|
| 26 |
2 25 5
|
mplsca |
|
| 27 |
26
|
fveq2d |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
2 25 5
|
mpllmodd |
|
| 32 |
2 25 5
|
mplringd |
|
| 33 |
29 30 31 32
|
ascl1 |
|
| 34 |
28 33
|
eqtrd |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
35 36
|
ringidcl |
|
| 38 |
5 37
|
syl |
|
| 39 |
1 2 29 35 25 5 38
|
mhpsclcl |
|
| 40 |
34 39
|
eqeltrrd |
|
| 41 |
|
eqid |
|
| 42 |
1 2 41 7
|
mhpmpl |
|
| 43 |
3 41
|
mgpbas |
|
| 44 |
|
eqid |
|
| 45 |
3 44
|
ringidval |
|
| 46 |
43 45 4
|
mulg0 |
|
| 47 |
42 46
|
syl |
|
| 48 |
1 7
|
mhprcl |
|
| 49 |
48
|
nn0cnd |
|
| 50 |
49
|
mul01d |
|
| 51 |
50
|
fveq2d |
|
| 52 |
40 47 51
|
3eltr4d |
|
| 53 |
|
eqid |
|
| 54 |
5
|
ad2antrr |
|
| 55 |
|
simpr |
|
| 56 |
7
|
ad2antrr |
|
| 57 |
1 2 53 54 55 56
|
mhpmulcl |
|
| 58 |
3
|
ringmgp |
|
| 59 |
32 58
|
syl |
|
| 60 |
59
|
ad2antrr |
|
| 61 |
|
simplr |
|
| 62 |
42
|
ad2antrr |
|
| 63 |
3 53
|
mgpplusg |
|
| 64 |
43 4 63
|
mulgnn0p1 |
|
| 65 |
60 61 62 64
|
syl3anc |
|
| 66 |
49
|
ad2antrr |
|
| 67 |
61
|
nn0cnd |
|
| 68 |
|
1cnd |
|
| 69 |
66 67 68
|
adddid |
|
| 70 |
66
|
mulridd |
|
| 71 |
70
|
oveq2d |
|
| 72 |
69 71
|
eqtrd |
|
| 73 |
72
|
fveq2d |
|
| 74 |
57 65 73
|
3eltr4d |
|
| 75 |
11 15 19 23 52 74
|
nn0indd |
|
| 76 |
6 75
|
mpdan |
|