Step |
Hyp |
Ref |
Expression |
1 |
|
mhppwdeg.h |
|
2 |
|
mhppwdeg.p |
|
3 |
|
mhppwdeg.t |
|
4 |
|
mhppwdeg.e |
|
5 |
|
mhppwdeg.i |
|
6 |
|
mhppwdeg.r |
|
7 |
|
mhppwdeg.m |
|
8 |
|
mhppwdeg.n |
|
9 |
|
mhppwdeg.x |
|
10 |
|
oveq1 |
|
11 |
|
oveq2 |
|
12 |
11
|
fveq2d |
|
13 |
10 12
|
eleq12d |
|
14 |
|
oveq1 |
|
15 |
|
oveq2 |
|
16 |
15
|
fveq2d |
|
17 |
14 16
|
eleq12d |
|
18 |
|
oveq1 |
|
19 |
|
oveq2 |
|
20 |
19
|
fveq2d |
|
21 |
18 20
|
eleq12d |
|
22 |
|
oveq1 |
|
23 |
|
oveq2 |
|
24 |
23
|
fveq2d |
|
25 |
22 24
|
eleq12d |
|
26 |
2 5 6
|
mplsca |
|
27 |
26
|
fveq2d |
|
28 |
27
|
fveq2d |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
2
|
mpllmod |
|
32 |
5 6 31
|
syl2anc |
|
33 |
2
|
mplring |
|
34 |
5 6 33
|
syl2anc |
|
35 |
29 30 32 34
|
ascl1 |
|
36 |
28 35
|
eqtrd |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
37 38
|
ringidcl |
|
40 |
6 39
|
syl |
|
41 |
1 2 29 37 5 6 40
|
mhpsclcl |
|
42 |
36 41
|
eqeltrrd |
|
43 |
|
eqid |
|
44 |
1 2 43 5 6 7 9
|
mhpmpl |
|
45 |
3 43
|
mgpbas |
|
46 |
|
eqid |
|
47 |
3 46
|
ringidval |
|
48 |
45 47 4
|
mulg0 |
|
49 |
44 48
|
syl |
|
50 |
7
|
nn0cnd |
|
51 |
50
|
mul01d |
|
52 |
51
|
fveq2d |
|
53 |
42 49 52
|
3eltr4d |
|
54 |
|
eqid |
|
55 |
5
|
ad2antrr |
|
56 |
6
|
ad2antrr |
|
57 |
7
|
ad2antrr |
|
58 |
|
simplr |
|
59 |
57 58
|
nn0mulcld |
|
60 |
|
simpr |
|
61 |
9
|
ad2antrr |
|
62 |
1 2 54 55 56 59 57 60 61
|
mhpmulcl |
|
63 |
3
|
ringmgp |
|
64 |
34 63
|
syl |
|
65 |
64
|
ad2antrr |
|
66 |
44
|
ad2antrr |
|
67 |
3 54
|
mgpplusg |
|
68 |
45 4 67
|
mulgnn0p1 |
|
69 |
65 58 66 68
|
syl3anc |
|
70 |
50
|
ad2antrr |
|
71 |
58
|
nn0cnd |
|
72 |
|
1cnd |
|
73 |
70 71 72
|
adddid |
|
74 |
70
|
mulid1d |
|
75 |
74
|
oveq2d |
|
76 |
73 75
|
eqtrd |
|
77 |
76
|
fveq2d |
|
78 |
62 69 77
|
3eltr4d |
|
79 |
13 17 21 25 53 78
|
nn0indd |
|
80 |
8 79
|
mpdan |
|