| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhppwdeg.h |
|- H = ( I mHomP R ) |
| 2 |
|
mhppwdeg.p |
|- P = ( I mPoly R ) |
| 3 |
|
mhppwdeg.t |
|- T = ( mulGrp ` P ) |
| 4 |
|
mhppwdeg.e |
|- .^ = ( .g ` T ) |
| 5 |
|
mhppwdeg.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
mhppwdeg.n |
|- ( ph -> N e. NN0 ) |
| 7 |
|
mhppwdeg.x |
|- ( ph -> X e. ( H ` M ) ) |
| 8 |
|
oveq1 |
|- ( x = 0 -> ( x .^ X ) = ( 0 .^ X ) ) |
| 9 |
|
oveq2 |
|- ( x = 0 -> ( M x. x ) = ( M x. 0 ) ) |
| 10 |
9
|
fveq2d |
|- ( x = 0 -> ( H ` ( M x. x ) ) = ( H ` ( M x. 0 ) ) ) |
| 11 |
8 10
|
eleq12d |
|- ( x = 0 -> ( ( x .^ X ) e. ( H ` ( M x. x ) ) <-> ( 0 .^ X ) e. ( H ` ( M x. 0 ) ) ) ) |
| 12 |
|
oveq1 |
|- ( x = y -> ( x .^ X ) = ( y .^ X ) ) |
| 13 |
|
oveq2 |
|- ( x = y -> ( M x. x ) = ( M x. y ) ) |
| 14 |
13
|
fveq2d |
|- ( x = y -> ( H ` ( M x. x ) ) = ( H ` ( M x. y ) ) ) |
| 15 |
12 14
|
eleq12d |
|- ( x = y -> ( ( x .^ X ) e. ( H ` ( M x. x ) ) <-> ( y .^ X ) e. ( H ` ( M x. y ) ) ) ) |
| 16 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x .^ X ) = ( ( y + 1 ) .^ X ) ) |
| 17 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( M x. x ) = ( M x. ( y + 1 ) ) ) |
| 18 |
17
|
fveq2d |
|- ( x = ( y + 1 ) -> ( H ` ( M x. x ) ) = ( H ` ( M x. ( y + 1 ) ) ) ) |
| 19 |
16 18
|
eleq12d |
|- ( x = ( y + 1 ) -> ( ( x .^ X ) e. ( H ` ( M x. x ) ) <-> ( ( y + 1 ) .^ X ) e. ( H ` ( M x. ( y + 1 ) ) ) ) ) |
| 20 |
|
oveq1 |
|- ( x = N -> ( x .^ X ) = ( N .^ X ) ) |
| 21 |
|
oveq2 |
|- ( x = N -> ( M x. x ) = ( M x. N ) ) |
| 22 |
21
|
fveq2d |
|- ( x = N -> ( H ` ( M x. x ) ) = ( H ` ( M x. N ) ) ) |
| 23 |
20 22
|
eleq12d |
|- ( x = N -> ( ( x .^ X ) e. ( H ` ( M x. x ) ) <-> ( N .^ X ) e. ( H ` ( M x. N ) ) ) ) |
| 24 |
|
reldmmhp |
|- Rel dom mHomP |
| 25 |
24 1 7
|
elfvov1 |
|- ( ph -> I e. _V ) |
| 26 |
2 25 5
|
mplsca |
|- ( ph -> R = ( Scalar ` P ) ) |
| 27 |
26
|
fveq2d |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
| 28 |
27
|
fveq2d |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( ( algSc ` P ) ` ( 1r ` ( Scalar ` P ) ) ) ) |
| 29 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 30 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 31 |
2 25 5
|
mpllmodd |
|- ( ph -> P e. LMod ) |
| 32 |
2 25 5
|
mplringd |
|- ( ph -> P e. Ring ) |
| 33 |
29 30 31 32
|
ascl1 |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` ( Scalar ` P ) ) ) = ( 1r ` P ) ) |
| 34 |
28 33
|
eqtrd |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) ) |
| 35 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 36 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 37 |
35 36
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 38 |
5 37
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 39 |
1 2 29 35 25 5 38
|
mhpsclcl |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) e. ( H ` 0 ) ) |
| 40 |
34 39
|
eqeltrrd |
|- ( ph -> ( 1r ` P ) e. ( H ` 0 ) ) |
| 41 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 42 |
1 2 41 7
|
mhpmpl |
|- ( ph -> X e. ( Base ` P ) ) |
| 43 |
3 41
|
mgpbas |
|- ( Base ` P ) = ( Base ` T ) |
| 44 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 45 |
3 44
|
ringidval |
|- ( 1r ` P ) = ( 0g ` T ) |
| 46 |
43 45 4
|
mulg0 |
|- ( X e. ( Base ` P ) -> ( 0 .^ X ) = ( 1r ` P ) ) |
| 47 |
42 46
|
syl |
|- ( ph -> ( 0 .^ X ) = ( 1r ` P ) ) |
| 48 |
1 7
|
mhprcl |
|- ( ph -> M e. NN0 ) |
| 49 |
48
|
nn0cnd |
|- ( ph -> M e. CC ) |
| 50 |
49
|
mul01d |
|- ( ph -> ( M x. 0 ) = 0 ) |
| 51 |
50
|
fveq2d |
|- ( ph -> ( H ` ( M x. 0 ) ) = ( H ` 0 ) ) |
| 52 |
40 47 51
|
3eltr4d |
|- ( ph -> ( 0 .^ X ) e. ( H ` ( M x. 0 ) ) ) |
| 53 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 54 |
5
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> R e. Ring ) |
| 55 |
|
simpr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( y .^ X ) e. ( H ` ( M x. y ) ) ) |
| 56 |
7
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> X e. ( H ` M ) ) |
| 57 |
1 2 53 54 55 56
|
mhpmulcl |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( ( y .^ X ) ( .r ` P ) X ) e. ( H ` ( ( M x. y ) + M ) ) ) |
| 58 |
3
|
ringmgp |
|- ( P e. Ring -> T e. Mnd ) |
| 59 |
32 58
|
syl |
|- ( ph -> T e. Mnd ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> T e. Mnd ) |
| 61 |
|
simplr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> y e. NN0 ) |
| 62 |
42
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> X e. ( Base ` P ) ) |
| 63 |
3 53
|
mgpplusg |
|- ( .r ` P ) = ( +g ` T ) |
| 64 |
43 4 63
|
mulgnn0p1 |
|- ( ( T e. Mnd /\ y e. NN0 /\ X e. ( Base ` P ) ) -> ( ( y + 1 ) .^ X ) = ( ( y .^ X ) ( .r ` P ) X ) ) |
| 65 |
60 61 62 64
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( ( y + 1 ) .^ X ) = ( ( y .^ X ) ( .r ` P ) X ) ) |
| 66 |
49
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> M e. CC ) |
| 67 |
61
|
nn0cnd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> y e. CC ) |
| 68 |
|
1cnd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> 1 e. CC ) |
| 69 |
66 67 68
|
adddid |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( M x. ( y + 1 ) ) = ( ( M x. y ) + ( M x. 1 ) ) ) |
| 70 |
66
|
mulridd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( M x. 1 ) = M ) |
| 71 |
70
|
oveq2d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( ( M x. y ) + ( M x. 1 ) ) = ( ( M x. y ) + M ) ) |
| 72 |
69 71
|
eqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( M x. ( y + 1 ) ) = ( ( M x. y ) + M ) ) |
| 73 |
72
|
fveq2d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( H ` ( M x. ( y + 1 ) ) ) = ( H ` ( ( M x. y ) + M ) ) ) |
| 74 |
57 65 73
|
3eltr4d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) e. ( H ` ( M x. y ) ) ) -> ( ( y + 1 ) .^ X ) e. ( H ` ( M x. ( y + 1 ) ) ) ) |
| 75 |
11 15 19 23 52 74
|
nn0indd |
|- ( ( ph /\ N e. NN0 ) -> ( N .^ X ) e. ( H ` ( M x. N ) ) ) |
| 76 |
6 75
|
mpdan |
|- ( ph -> ( N .^ X ) e. ( H ` ( M x. N ) ) ) |