Step |
Hyp |
Ref |
Expression |
1 |
|
mhpaddcl.h |
|- H = ( I mHomP R ) |
2 |
|
mhpaddcl.p |
|- P = ( I mPoly R ) |
3 |
|
mhpaddcl.a |
|- .+ = ( +g ` P ) |
4 |
|
mhpaddcl.i |
|- ( ph -> I e. V ) |
5 |
|
mhpaddcl.r |
|- ( ph -> R e. Grp ) |
6 |
|
mhpaddcl.n |
|- ( ph -> N e. NN0 ) |
7 |
|
mhpaddcl.x |
|- ( ph -> X e. ( H ` N ) ) |
8 |
|
mhpaddcl.y |
|- ( ph -> Y e. ( H ` N ) ) |
9 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
10 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
11 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
12 |
2
|
mplgrp |
|- ( ( I e. V /\ R e. Grp ) -> P e. Grp ) |
13 |
4 5 12
|
syl2anc |
|- ( ph -> P e. Grp ) |
14 |
1 2 9 4 5 6 7
|
mhpmpl |
|- ( ph -> X e. ( Base ` P ) ) |
15 |
1 2 9 4 5 6 8
|
mhpmpl |
|- ( ph -> Y e. ( Base ` P ) ) |
16 |
9 3
|
grpcl |
|- ( ( P e. Grp /\ X e. ( Base ` P ) /\ Y e. ( Base ` P ) ) -> ( X .+ Y ) e. ( Base ` P ) ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. ( Base ` P ) ) |
18 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
19 |
2 9 18 3 14 15
|
mpladd |
|- ( ph -> ( X .+ Y ) = ( X oF ( +g ` R ) Y ) ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( X .+ Y ) supp ( 0g ` R ) ) = ( ( X oF ( +g ` R ) Y ) supp ( 0g ` R ) ) ) |
21 |
|
ovexd |
|- ( ph -> ( NN0 ^m I ) e. _V ) |
22 |
11 21
|
rabexd |
|- ( ph -> { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V ) |
23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
24 |
23 10
|
grpidcl |
|- ( R e. Grp -> ( 0g ` R ) e. ( Base ` R ) ) |
25 |
5 24
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
26 |
2 23 9 11 14
|
mplelf |
|- ( ph -> X : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
27 |
2 23 9 11 15
|
mplelf |
|- ( ph -> Y : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
28 |
23 18 10
|
grplid |
|- ( ( R e. Grp /\ ( 0g ` R ) e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
29 |
5 25 28
|
syl2anc |
|- ( ph -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
30 |
22 25 26 27 29
|
suppofssd |
|- ( ph -> ( ( X oF ( +g ` R ) Y ) supp ( 0g ` R ) ) C_ ( ( X supp ( 0g ` R ) ) u. ( Y supp ( 0g ` R ) ) ) ) |
31 |
20 30
|
eqsstrd |
|- ( ph -> ( ( X .+ Y ) supp ( 0g ` R ) ) C_ ( ( X supp ( 0g ` R ) ) u. ( Y supp ( 0g ` R ) ) ) ) |
32 |
1 10 11 4 5 6 7
|
mhpdeg |
|- ( ph -> ( X supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
33 |
1 10 11 4 5 6 8
|
mhpdeg |
|- ( ph -> ( Y supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
34 |
32 33
|
unssd |
|- ( ph -> ( ( X supp ( 0g ` R ) ) u. ( Y supp ( 0g ` R ) ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
35 |
31 34
|
sstrd |
|- ( ph -> ( ( X .+ Y ) supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
36 |
1 2 9 10 11 4 5 6 17 35
|
ismhp2 |
|- ( ph -> ( X .+ Y ) e. ( H ` N ) ) |