| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhpaddcl.h |
|- H = ( I mHomP R ) |
| 2 |
|
mhpaddcl.p |
|- P = ( I mPoly R ) |
| 3 |
|
mhpaddcl.a |
|- .+ = ( +g ` P ) |
| 4 |
|
mhpaddcl.r |
|- ( ph -> R e. Grp ) |
| 5 |
|
mhpaddcl.x |
|- ( ph -> X e. ( H ` N ) ) |
| 6 |
|
mhpaddcl.y |
|- ( ph -> Y e. ( H ` N ) ) |
| 7 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 9 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 10 |
1 5
|
mhprcl |
|- ( ph -> N e. NN0 ) |
| 11 |
|
reldmmhp |
|- Rel dom mHomP |
| 12 |
11 1 5
|
elfvov1 |
|- ( ph -> I e. _V ) |
| 13 |
2
|
mplgrp |
|- ( ( I e. _V /\ R e. Grp ) -> P e. Grp ) |
| 14 |
12 4 13
|
syl2anc |
|- ( ph -> P e. Grp ) |
| 15 |
1 2 7 5
|
mhpmpl |
|- ( ph -> X e. ( Base ` P ) ) |
| 16 |
1 2 7 6
|
mhpmpl |
|- ( ph -> Y e. ( Base ` P ) ) |
| 17 |
7 3 14 15 16
|
grpcld |
|- ( ph -> ( X .+ Y ) e. ( Base ` P ) ) |
| 18 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 19 |
2 7 18 3 15 16
|
mpladd |
|- ( ph -> ( X .+ Y ) = ( X oF ( +g ` R ) Y ) ) |
| 20 |
19
|
oveq1d |
|- ( ph -> ( ( X .+ Y ) supp ( 0g ` R ) ) = ( ( X oF ( +g ` R ) Y ) supp ( 0g ` R ) ) ) |
| 21 |
|
ovexd |
|- ( ph -> ( NN0 ^m I ) e. _V ) |
| 22 |
9 21
|
rabexd |
|- ( ph -> { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V ) |
| 23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 24 |
23 8
|
grpidcl |
|- ( R e. Grp -> ( 0g ` R ) e. ( Base ` R ) ) |
| 25 |
4 24
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
| 26 |
2 23 7 9 15
|
mplelf |
|- ( ph -> X : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
| 27 |
2 23 7 9 16
|
mplelf |
|- ( ph -> Y : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
| 28 |
23 18 8 4 25
|
grplidd |
|- ( ph -> ( ( 0g ` R ) ( +g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 29 |
22 25 26 27 28
|
suppofssd |
|- ( ph -> ( ( X oF ( +g ` R ) Y ) supp ( 0g ` R ) ) C_ ( ( X supp ( 0g ` R ) ) u. ( Y supp ( 0g ` R ) ) ) ) |
| 30 |
20 29
|
eqsstrd |
|- ( ph -> ( ( X .+ Y ) supp ( 0g ` R ) ) C_ ( ( X supp ( 0g ` R ) ) u. ( Y supp ( 0g ` R ) ) ) ) |
| 31 |
1 8 9 5
|
mhpdeg |
|- ( ph -> ( X supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
| 32 |
1 8 9 6
|
mhpdeg |
|- ( ph -> ( Y supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
| 33 |
31 32
|
unssd |
|- ( ph -> ( ( X supp ( 0g ` R ) ) u. ( Y supp ( 0g ` R ) ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
| 34 |
30 33
|
sstrd |
|- ( ph -> ( ( X .+ Y ) supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
| 35 |
1 2 7 8 9 10 17 34
|
ismhp2 |
|- ( ph -> ( X .+ Y ) e. ( H ` N ) ) |