Metamath Proof Explorer


Theorem mhpaddcl

Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023)

Ref Expression
Hypotheses mhpaddcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpaddcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhpaddcl.a + = ( +g𝑃 )
mhpaddcl.i ( 𝜑𝐼𝑉 )
mhpaddcl.r ( 𝜑𝑅 ∈ Grp )
mhpaddcl.n ( 𝜑𝑁 ∈ ℕ0 )
mhpaddcl.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
mhpaddcl.y ( 𝜑𝑌 ∈ ( 𝐻𝑁 ) )
Assertion mhpaddcl ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐻𝑁 ) )

Proof

Step Hyp Ref Expression
1 mhpaddcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpaddcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhpaddcl.a + = ( +g𝑃 )
4 mhpaddcl.i ( 𝜑𝐼𝑉 )
5 mhpaddcl.r ( 𝜑𝑅 ∈ Grp )
6 mhpaddcl.n ( 𝜑𝑁 ∈ ℕ0 )
7 mhpaddcl.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
8 mhpaddcl.y ( 𝜑𝑌 ∈ ( 𝐻𝑁 ) )
9 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
10 eqid ( 0g𝑅 ) = ( 0g𝑅 )
11 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
12 2 mplgrp ( ( 𝐼𝑉𝑅 ∈ Grp ) → 𝑃 ∈ Grp )
13 4 5 12 syl2anc ( 𝜑𝑃 ∈ Grp )
14 1 2 9 4 5 6 7 mhpmpl ( 𝜑𝑋 ∈ ( Base ‘ 𝑃 ) )
15 1 2 9 4 5 6 8 mhpmpl ( 𝜑𝑌 ∈ ( Base ‘ 𝑃 ) )
16 9 3 grpcl ( ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 + 𝑌 ) ∈ ( Base ‘ 𝑃 ) )
17 13 14 15 16 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( Base ‘ 𝑃 ) )
18 eqid ( +g𝑅 ) = ( +g𝑅 )
19 2 9 18 3 14 15 mpladd ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑋f ( +g𝑅 ) 𝑌 ) )
20 19 oveq1d ( 𝜑 → ( ( 𝑋 + 𝑌 ) supp ( 0g𝑅 ) ) = ( ( 𝑋f ( +g𝑅 ) 𝑌 ) supp ( 0g𝑅 ) ) )
21 ovexd ( 𝜑 → ( ℕ0m 𝐼 ) ∈ V )
22 11 21 rabexd ( 𝜑 → { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∈ V )
23 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
24 23 10 grpidcl ( 𝑅 ∈ Grp → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
25 5 24 syl ( 𝜑 → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
26 2 23 9 11 14 mplelf ( 𝜑𝑋 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
27 2 23 9 11 15 mplelf ( 𝜑𝑌 : { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
28 23 18 10 grplid ( ( 𝑅 ∈ Grp ∧ ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g𝑅 ) ( +g𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
29 5 25 28 syl2anc ( 𝜑 → ( ( 0g𝑅 ) ( +g𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
30 22 25 26 27 29 suppofssd ( 𝜑 → ( ( 𝑋f ( +g𝑅 ) 𝑌 ) supp ( 0g𝑅 ) ) ⊆ ( ( 𝑋 supp ( 0g𝑅 ) ) ∪ ( 𝑌 supp ( 0g𝑅 ) ) ) )
31 20 30 eqsstrd ( 𝜑 → ( ( 𝑋 + 𝑌 ) supp ( 0g𝑅 ) ) ⊆ ( ( 𝑋 supp ( 0g𝑅 ) ) ∪ ( 𝑌 supp ( 0g𝑅 ) ) ) )
32 1 10 11 4 5 6 7 mhpdeg ( 𝜑 → ( 𝑋 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )
33 1 10 11 4 5 6 8 mhpdeg ( 𝜑 → ( 𝑌 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )
34 32 33 unssd ( 𝜑 → ( ( 𝑋 supp ( 0g𝑅 ) ) ∪ ( 𝑌 supp ( 0g𝑅 ) ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )
35 31 34 sstrd ( 𝜑 → ( ( 𝑋 + 𝑌 ) supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )
36 1 2 9 10 11 4 5 6 17 35 ismhp2 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐻𝑁 ) )