Step |
Hyp |
Ref |
Expression |
1 |
|
mhpinvcl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpinvcl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhpinvcl.m |
⊢ 𝑀 = ( invg ‘ 𝑃 ) |
4 |
|
mhpinvcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
mhpinvcl.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
6 |
|
mhpinvcl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
mhpinvcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
11 |
2
|
mplgrp |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp ) → 𝑃 ∈ Grp ) |
12 |
4 5 11
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
13 |
1 2 8 4 5 6 7
|
mhpmpl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
14 |
8 3
|
grpinvcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑀 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
15 |
12 13 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
16 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
17 |
2 8 16 3 4 5 13
|
mplneg |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( ( invg ‘ 𝑅 ) ∘ 𝑋 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) = ( ( ( invg ‘ 𝑅 ) ∘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
20 |
19 16
|
grpinvfn |
⊢ ( invg ‘ 𝑅 ) Fn ( Base ‘ 𝑅 ) |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( invg ‘ 𝑅 ) Fn ( Base ‘ 𝑅 ) ) |
22 |
2 19 8 10 13
|
mplelf |
⊢ ( 𝜑 → 𝑋 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
23 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
24 |
23
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
26 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
27 |
9 16
|
grpinvid |
⊢ ( 𝑅 ∈ Grp → ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
28 |
5 27
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
29 |
21 22 25 26 28
|
suppcoss |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ∘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) |
30 |
18 29
|
eqsstrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ) |
31 |
1 9 10 4 5 6 7
|
mhpdeg |
⊢ ( 𝜑 → ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
32 |
30 31
|
sstrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
33 |
1 2 8 9 10 4 5 6 15 32
|
ismhp2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( 𝐻 ‘ 𝑁 ) ) |