Metamath Proof Explorer


Theorem mhpinvcl

Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023)

Ref Expression
Hypotheses mhpinvcl.h H = I mHomP R
mhpinvcl.p P = I mPoly R
mhpinvcl.m M = inv g P
mhpinvcl.i φ I V
mhpinvcl.r φ R Grp
mhpinvcl.n φ N 0
mhpinvcl.x φ X H N
Assertion mhpinvcl φ M X H N

Proof

Step Hyp Ref Expression
1 mhpinvcl.h H = I mHomP R
2 mhpinvcl.p P = I mPoly R
3 mhpinvcl.m M = inv g P
4 mhpinvcl.i φ I V
5 mhpinvcl.r φ R Grp
6 mhpinvcl.n φ N 0
7 mhpinvcl.x φ X H N
8 eqid Base P = Base P
9 eqid 0 R = 0 R
10 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
11 2 mplgrp I V R Grp P Grp
12 4 5 11 syl2anc φ P Grp
13 1 2 8 4 5 6 7 mhpmpl φ X Base P
14 8 3 grpinvcl P Grp X Base P M X Base P
15 12 13 14 syl2anc φ M X Base P
16 eqid inv g R = inv g R
17 2 8 16 3 4 5 13 mplneg φ M X = inv g R X
18 17 oveq1d φ M X supp 0 R = inv g R X supp 0 R
19 eqid Base R = Base R
20 19 16 grpinvfn inv g R Fn Base R
21 20 a1i φ inv g R Fn Base R
22 2 19 8 10 13 mplelf φ X : h 0 I | h -1 Fin Base R
23 ovex 0 I V
24 23 rabex h 0 I | h -1 Fin V
25 24 a1i φ h 0 I | h -1 Fin V
26 fvexd φ 0 R V
27 9 16 grpinvid R Grp inv g R 0 R = 0 R
28 5 27 syl φ inv g R 0 R = 0 R
29 21 22 25 26 28 suppcoss φ inv g R X supp 0 R X supp 0 R
30 18 29 eqsstrd φ M X supp 0 R X supp 0 R
31 1 9 10 4 5 6 7 mhpdeg φ X supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
32 30 31 sstrd φ M X supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
33 1 2 8 9 10 4 5 6 15 32 ismhp2 φ M X H N