Metamath Proof Explorer


Theorem mhpsubg

Description: Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhpsubg.h H=ImHomPR
mhpsubg.p P=ImPolyR
mhpsubg.i φIV
mhpsubg.r φRGrp
mhpsubg.n φN0
Assertion mhpsubg φHNSubGrpP

Proof

Step Hyp Ref Expression
1 mhpsubg.h H=ImHomPR
2 mhpsubg.p P=ImPolyR
3 mhpsubg.i φIV
4 mhpsubg.r φRGrp
5 mhpsubg.n φN0
6 eqid BaseP=BaseP
7 3 adantr φxHNIV
8 4 adantr φxHNRGrp
9 5 adantr φxHNN0
10 simpr φxHNxHN
11 1 2 6 7 8 9 10 mhpmpl φxHNxBaseP
12 11 ex φxHNxBaseP
13 12 ssrdv φHNBaseP
14 eqid 0R=0R
15 eqid h0I|h-1Fin=h0I|h-1Fin
16 1 14 15 3 4 5 mhp0cl φh0I|h-1Fin×0RHN
17 16 ne0d φHN
18 eqid +P=+P
19 7 adantr φxHNyHNIV
20 8 adantr φxHNyHNRGrp
21 9 adantr φxHNyHNN0
22 simplr φxHNyHNxHN
23 simpr φxHNyHNyHN
24 1 2 18 19 20 21 22 23 mhpaddcl φxHNyHNx+PyHN
25 24 ralrimiva φxHNyHNx+PyHN
26 eqid invgP=invgP
27 1 2 26 7 8 9 10 mhpinvcl φxHNinvgPxHN
28 25 27 jca φxHNyHNx+PyHNinvgPxHN
29 28 ralrimiva φxHNyHNx+PyHNinvgPxHN
30 2 mplgrp IVRGrpPGrp
31 3 4 30 syl2anc φPGrp
32 6 18 26 issubg2 PGrpHNSubGrpPHNBasePHNxHNyHNx+PyHNinvgPxHN
33 31 32 syl φHNSubGrpPHNBasePHNxHNyHNx+PyHNinvgPxHN
34 13 17 29 33 mpbir3and φHNSubGrpP