Step |
Hyp |
Ref |
Expression |
1 |
|
mhpinvcl.h |
|- H = ( I mHomP R ) |
2 |
|
mhpinvcl.p |
|- P = ( I mPoly R ) |
3 |
|
mhpinvcl.m |
|- M = ( invg ` P ) |
4 |
|
mhpinvcl.i |
|- ( ph -> I e. V ) |
5 |
|
mhpinvcl.r |
|- ( ph -> R e. Grp ) |
6 |
|
mhpinvcl.n |
|- ( ph -> N e. NN0 ) |
7 |
|
mhpinvcl.x |
|- ( ph -> X e. ( H ` N ) ) |
8 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
9 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
10 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
11 |
2
|
mplgrp |
|- ( ( I e. V /\ R e. Grp ) -> P e. Grp ) |
12 |
4 5 11
|
syl2anc |
|- ( ph -> P e. Grp ) |
13 |
1 2 8 4 5 6 7
|
mhpmpl |
|- ( ph -> X e. ( Base ` P ) ) |
14 |
8 3
|
grpinvcl |
|- ( ( P e. Grp /\ X e. ( Base ` P ) ) -> ( M ` X ) e. ( Base ` P ) ) |
15 |
12 13 14
|
syl2anc |
|- ( ph -> ( M ` X ) e. ( Base ` P ) ) |
16 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
17 |
2 8 16 3 4 5 13
|
mplneg |
|- ( ph -> ( M ` X ) = ( ( invg ` R ) o. X ) ) |
18 |
17
|
oveq1d |
|- ( ph -> ( ( M ` X ) supp ( 0g ` R ) ) = ( ( ( invg ` R ) o. X ) supp ( 0g ` R ) ) ) |
19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
20 |
19 16
|
grpinvfn |
|- ( invg ` R ) Fn ( Base ` R ) |
21 |
20
|
a1i |
|- ( ph -> ( invg ` R ) Fn ( Base ` R ) ) |
22 |
2 19 8 10 13
|
mplelf |
|- ( ph -> X : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
23 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
24 |
23
|
rabex |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V |
25 |
24
|
a1i |
|- ( ph -> { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V ) |
26 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
27 |
9 16
|
grpinvid |
|- ( R e. Grp -> ( ( invg ` R ) ` ( 0g ` R ) ) = ( 0g ` R ) ) |
28 |
5 27
|
syl |
|- ( ph -> ( ( invg ` R ) ` ( 0g ` R ) ) = ( 0g ` R ) ) |
29 |
21 22 25 26 28
|
suppcoss |
|- ( ph -> ( ( ( invg ` R ) o. X ) supp ( 0g ` R ) ) C_ ( X supp ( 0g ` R ) ) ) |
30 |
18 29
|
eqsstrd |
|- ( ph -> ( ( M ` X ) supp ( 0g ` R ) ) C_ ( X supp ( 0g ` R ) ) ) |
31 |
1 9 10 4 5 6 7
|
mhpdeg |
|- ( ph -> ( X supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
32 |
30 31
|
sstrd |
|- ( ph -> ( ( M ` X ) supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
33 |
1 2 8 9 10 4 5 6 15 32
|
ismhp2 |
|- ( ph -> ( M ` X ) e. ( H ` N ) ) |