| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplneg.p |
|- P = ( I mPoly R ) |
| 2 |
|
mplneg.b |
|- B = ( Base ` P ) |
| 3 |
|
mplneg.n |
|- N = ( invg ` R ) |
| 4 |
|
mplneg.m |
|- M = ( invg ` P ) |
| 5 |
|
mplneg.i |
|- ( ph -> I e. V ) |
| 6 |
|
mplneg.r |
|- ( ph -> R e. Grp ) |
| 7 |
|
mplneg.x |
|- ( ph -> X e. B ) |
| 8 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 9 |
8 1 2 5 6
|
mplsubg |
|- ( ph -> B e. ( SubGrp ` ( I mPwSer R ) ) ) |
| 10 |
1 8 2
|
mplval2 |
|- P = ( ( I mPwSer R ) |`s B ) |
| 11 |
|
eqid |
|- ( invg ` ( I mPwSer R ) ) = ( invg ` ( I mPwSer R ) ) |
| 12 |
10 11 4
|
subginv |
|- ( ( B e. ( SubGrp ` ( I mPwSer R ) ) /\ X e. B ) -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( M ` X ) ) |
| 13 |
9 7 12
|
syl2anc |
|- ( ph -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( M ` X ) ) |
| 14 |
|
eqid |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 15 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
| 16 |
1 8 2 15
|
mplbasss |
|- B C_ ( Base ` ( I mPwSer R ) ) |
| 17 |
16
|
sseli |
|- ( X e. B -> X e. ( Base ` ( I mPwSer R ) ) ) |
| 18 |
7 17
|
syl |
|- ( ph -> X e. ( Base ` ( I mPwSer R ) ) ) |
| 19 |
8 5 6 14 3 15 11 18
|
psrneg |
|- ( ph -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( N o. X ) ) |
| 20 |
13 19
|
eqtr3d |
|- ( ph -> ( M ` X ) = ( N o. X ) ) |