| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplneg.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplneg.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
mplneg.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 4 |
|
mplneg.m |
⊢ 𝑀 = ( invg ‘ 𝑃 ) |
| 5 |
|
mplneg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
mplneg.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 7 |
|
mplneg.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 9 |
8 1 2 5 6
|
mplsubg |
⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 10 |
1 8 2
|
mplval2 |
⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s 𝐵 ) |
| 11 |
|
eqid |
⊢ ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 12 |
10 11 4
|
subginv |
⊢ ( ( 𝐵 ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑀 ‘ 𝑋 ) ) |
| 13 |
9 7 12
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑀 ‘ 𝑋 ) ) |
| 14 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 15 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 16 |
1 8 2 15
|
mplbasss |
⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 17 |
16
|
sseli |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 18 |
7 17
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 19 |
8 5 6 14 3 15 11 18
|
psrneg |
⊢ ( 𝜑 → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ) |
| 20 |
13 19
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ) |