Metamath Proof Explorer


Theorem mplneg

Description: The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses mplneg.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplneg.b 𝐵 = ( Base ‘ 𝑃 )
mplneg.n 𝑁 = ( invg𝑅 )
mplneg.m 𝑀 = ( invg𝑃 )
mplneg.i ( 𝜑𝐼𝑉 )
mplneg.r ( 𝜑𝑅 ∈ Grp )
mplneg.x ( 𝜑𝑋𝐵 )
Assertion mplneg ( 𝜑 → ( 𝑀𝑋 ) = ( 𝑁𝑋 ) )

Proof

Step Hyp Ref Expression
1 mplneg.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplneg.b 𝐵 = ( Base ‘ 𝑃 )
3 mplneg.n 𝑁 = ( invg𝑅 )
4 mplneg.m 𝑀 = ( invg𝑃 )
5 mplneg.i ( 𝜑𝐼𝑉 )
6 mplneg.r ( 𝜑𝑅 ∈ Grp )
7 mplneg.x ( 𝜑𝑋𝐵 )
8 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
9 8 1 2 5 6 mplsubg ( 𝜑𝐵 ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) )
10 1 8 2 mplval2 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s 𝐵 )
11 eqid ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( invg ‘ ( 𝐼 mPwSer 𝑅 ) )
12 10 11 4 subginv ( ( 𝐵 ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑋𝐵 ) → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑀𝑋 ) )
13 9 7 12 syl2anc ( 𝜑 → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑀𝑋 ) )
14 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
15 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
16 1 8 2 15 mplbasss 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
17 16 sseli ( 𝑋𝐵𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
18 7 17 syl ( 𝜑𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
19 8 5 6 14 3 15 11 18 psrneg ( 𝜑 → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑁𝑋 ) )
20 13 19 eqtr3d ( 𝜑 → ( 𝑀𝑋 ) = ( 𝑁𝑋 ) )