| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhprcl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
| 2 |
|
mhprcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
| 3 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 7 |
|
reldmmhp |
⊢ Rel dom mHomP |
| 8 |
7 1 2
|
elfvov1 |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 9 |
7 1 2
|
elfvov2 |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 10 |
1 3 4 5 6 8 9
|
mhpfval |
⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |
| 11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ‘ 𝑁 ) ) |
| 12 |
2 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ‘ 𝑁 ) ) |
| 13 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) |
| 14 |
13
|
mptrcl |
⊢ ( 𝑋 ∈ ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ‘ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 15 |
12 14
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |