Metamath Proof Explorer


Theorem mhprcl

Description: Reverse closure for homogeneous polynomials, use elfvov1 and elfvov2 with reldmmhp for the reverse closure of I and R . (Contributed by SN, 4-Aug-2025)

Ref Expression
Hypotheses mhprcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhprcl.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
Assertion mhprcl ( 𝜑𝑁 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 mhprcl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhprcl.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
3 eqid ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 )
4 eqid ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
7 reldmmhp Rel dom mHomP
8 7 1 2 elfvov1 ( 𝜑𝐼 ∈ V )
9 7 1 2 elfvov2 ( 𝜑𝑅 ∈ V )
10 1 3 4 5 6 8 9 mhpfval ( 𝜑𝐻 = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )
11 10 fveq1d ( 𝜑 → ( 𝐻𝑁 ) = ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) ‘ 𝑁 ) )
12 2 11 eleqtrd ( 𝜑𝑋 ∈ ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) ‘ 𝑁 ) )
13 eqid ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } )
14 13 mptrcl ( 𝑋 ∈ ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∣ ( 𝑓 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) ‘ 𝑁 ) → 𝑁 ∈ ℕ0 )
15 12 14 syl ( 𝜑𝑁 ∈ ℕ0 )