Step |
Hyp |
Ref |
Expression |
1 |
|
mhprcl.h |
|- H = ( I mHomP R ) |
2 |
|
mhprcl.x |
|- ( ph -> X e. ( H ` N ) ) |
3 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
4 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
7 |
|
reldmmhp |
|- Rel dom mHomP |
8 |
7 1 2
|
elfvov1 |
|- ( ph -> I e. _V ) |
9 |
7 1 2
|
elfvov2 |
|- ( ph -> R e. _V ) |
10 |
1 3 4 5 6 8 9
|
mhpfval |
|- ( ph -> H = ( n e. NN0 |-> { f e. ( Base ` ( I mPoly R ) ) | ( f supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |
11 |
10
|
fveq1d |
|- ( ph -> ( H ` N ) = ( ( n e. NN0 |-> { f e. ( Base ` ( I mPoly R ) ) | ( f supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ` N ) ) |
12 |
2 11
|
eleqtrd |
|- ( ph -> X e. ( ( n e. NN0 |-> { f e. ( Base ` ( I mPoly R ) ) | ( f supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ` N ) ) |
13 |
|
eqid |
|- ( n e. NN0 |-> { f e. ( Base ` ( I mPoly R ) ) | ( f supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) = ( n e. NN0 |-> { f e. ( Base ` ( I mPoly R ) ) | ( f supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) |
14 |
13
|
mptrcl |
|- ( X e. ( ( n e. NN0 |-> { f e. ( Base ` ( I mPoly R ) ) | ( f supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ` N ) -> N e. NN0 ) |
15 |
12 14
|
syl |
|- ( ph -> N e. NN0 ) |