| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhpsclcl.h |
|- H = ( I mHomP R ) |
| 2 |
|
mhpsclcl.p |
|- P = ( I mPoly R ) |
| 3 |
|
mhpsclcl.a |
|- A = ( algSc ` P ) |
| 4 |
|
mhpsclcl.k |
|- K = ( Base ` R ) |
| 5 |
|
mhpsclcl.i |
|- ( ph -> I e. V ) |
| 6 |
|
mhpsclcl.r |
|- ( ph -> R e. Ring ) |
| 7 |
|
mhpsclcl.c |
|- ( ph -> C e. K ) |
| 8 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 9 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> I e. V ) |
| 11 |
6
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R e. Ring ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> C e. K ) |
| 13 |
2 8 9 4 3 10 11 12
|
mplascl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( A ` C ) = ( y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , C , ( 0g ` R ) ) ) ) |
| 14 |
|
eqeq1 |
|- ( y = d -> ( y = ( I X. { 0 } ) <-> d = ( I X. { 0 } ) ) ) |
| 15 |
14
|
ifbid |
|- ( y = d -> if ( y = ( I X. { 0 } ) , C , ( 0g ` R ) ) = if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ y = d ) -> if ( y = ( I X. { 0 } ) , C , ( 0g ` R ) ) = if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) ) |
| 17 |
|
simpr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 18 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
| 19 |
7 18
|
ifexd |
|- ( ph -> if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) e. _V ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) e. _V ) |
| 21 |
13 16 17 20
|
fvmptd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( A ` C ) ` d ) = if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) ) |
| 22 |
21
|
neeq1d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( A ` C ) ` d ) =/= ( 0g ` R ) <-> if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) =/= ( 0g ` R ) ) ) |
| 23 |
|
iffalse |
|- ( -. d = ( I X. { 0 } ) -> if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 24 |
23
|
necon1ai |
|- ( if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) =/= ( 0g ` R ) -> d = ( I X. { 0 } ) ) |
| 25 |
|
fconstmpt |
|- ( I X. { 0 } ) = ( k e. I |-> 0 ) |
| 26 |
25
|
oveq2i |
|- ( ( CCfld |`s NN0 ) gsum ( I X. { 0 } ) ) = ( ( CCfld |`s NN0 ) gsum ( k e. I |-> 0 ) ) |
| 27 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
| 28 |
|
eqid |
|- ( CCfld |`s NN0 ) = ( CCfld |`s NN0 ) |
| 29 |
28
|
submmnd |
|- ( NN0 e. ( SubMnd ` CCfld ) -> ( CCfld |`s NN0 ) e. Mnd ) |
| 30 |
27 29
|
ax-mp |
|- ( CCfld |`s NN0 ) e. Mnd |
| 31 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 32 |
28 31
|
subm0 |
|- ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s NN0 ) ) ) |
| 33 |
27 32
|
ax-mp |
|- 0 = ( 0g ` ( CCfld |`s NN0 ) ) |
| 34 |
33
|
gsumz |
|- ( ( ( CCfld |`s NN0 ) e. Mnd /\ I e. V ) -> ( ( CCfld |`s NN0 ) gsum ( k e. I |-> 0 ) ) = 0 ) |
| 35 |
30 10 34
|
sylancr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( CCfld |`s NN0 ) gsum ( k e. I |-> 0 ) ) = 0 ) |
| 36 |
26 35
|
eqtrid |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( CCfld |`s NN0 ) gsum ( I X. { 0 } ) ) = 0 ) |
| 37 |
|
oveq2 |
|- ( d = ( I X. { 0 } ) -> ( ( CCfld |`s NN0 ) gsum d ) = ( ( CCfld |`s NN0 ) gsum ( I X. { 0 } ) ) ) |
| 38 |
37
|
eqeq1d |
|- ( d = ( I X. { 0 } ) -> ( ( ( CCfld |`s NN0 ) gsum d ) = 0 <-> ( ( CCfld |`s NN0 ) gsum ( I X. { 0 } ) ) = 0 ) ) |
| 39 |
36 38
|
syl5ibrcom |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d = ( I X. { 0 } ) -> ( ( CCfld |`s NN0 ) gsum d ) = 0 ) ) |
| 40 |
24 39
|
syl5 |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( if ( d = ( I X. { 0 } ) , C , ( 0g ` R ) ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = 0 ) ) |
| 41 |
22 40
|
sylbid |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( A ` C ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = 0 ) ) |
| 42 |
41
|
ralrimiva |
|- ( ph -> A. d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( ( A ` C ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = 0 ) ) |
| 43 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 44 |
|
0nn0 |
|- 0 e. NN0 |
| 45 |
44
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 46 |
2 43 4 3 5 6
|
mplasclf |
|- ( ph -> A : K --> ( Base ` P ) ) |
| 47 |
46 7
|
ffvelcdmd |
|- ( ph -> ( A ` C ) e. ( Base ` P ) ) |
| 48 |
1 2 43 9 8 45 47
|
ismhp3 |
|- ( ph -> ( ( A ` C ) e. ( H ` 0 ) <-> A. d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( ( A ` C ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = 0 ) ) ) |
| 49 |
42 48
|
mpbird |
|- ( ph -> ( A ` C ) e. ( H ` 0 ) ) |