Step |
Hyp |
Ref |
Expression |
1 |
|
mhpvarcl.h |
|- H = ( I mHomP R ) |
2 |
|
mhpvarcl.v |
|- V = ( I mVar R ) |
3 |
|
mhpvarcl.i |
|- ( ph -> I e. W ) |
4 |
|
mhpvarcl.r |
|- ( ph -> R e. Ring ) |
5 |
|
mhpvarcl.x |
|- ( ph -> X e. I ) |
6 |
|
iffalse |
|- ( -. d = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> if ( d = ( y e. I |-> if ( y = X , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
7 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
10 |
3
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> I e. W ) |
11 |
4
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R e. Ring ) |
12 |
5
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> X e. I ) |
13 |
|
simpr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
14 |
2 7 8 9 10 11 12 13
|
mvrval2 |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( V ` X ) ` d ) = if ( d = ( y e. I |-> if ( y = X , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
15 |
14
|
eqeq1d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( V ` X ) ` d ) = ( 0g ` R ) <-> if ( d = ( y e. I |-> if ( y = X , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = ( 0g ` R ) ) ) |
16 |
6 15
|
syl5ibr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( -. d = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> ( ( V ` X ) ` d ) = ( 0g ` R ) ) ) |
17 |
16
|
necon1ad |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( V ` X ) ` d ) =/= ( 0g ` R ) -> d = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
18 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
19 |
|
eqid |
|- ( CCfld |`s NN0 ) = ( CCfld |`s NN0 ) |
20 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
21 |
19 20
|
subm0 |
|- ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s NN0 ) ) ) |
22 |
18 21
|
ax-mp |
|- 0 = ( 0g ` ( CCfld |`s NN0 ) ) |
23 |
19
|
submmnd |
|- ( NN0 e. ( SubMnd ` CCfld ) -> ( CCfld |`s NN0 ) e. Mnd ) |
24 |
18 23
|
mp1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( CCfld |`s NN0 ) e. Mnd ) |
25 |
|
eqid |
|- ( y e. I |-> if ( y = X , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) |
26 |
|
1nn0 |
|- 1 e. NN0 |
27 |
19
|
submbas |
|- ( NN0 e. ( SubMnd ` CCfld ) -> NN0 = ( Base ` ( CCfld |`s NN0 ) ) ) |
28 |
18 27
|
ax-mp |
|- NN0 = ( Base ` ( CCfld |`s NN0 ) ) |
29 |
26 28
|
eleqtri |
|- 1 e. ( Base ` ( CCfld |`s NN0 ) ) |
30 |
29
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> 1 e. ( Base ` ( CCfld |`s NN0 ) ) ) |
31 |
22 24 10 12 25 30
|
gsummptif1n0 |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( CCfld |`s NN0 ) gsum ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = 1 ) |
32 |
|
oveq2 |
|- ( d = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> ( ( CCfld |`s NN0 ) gsum d ) = ( ( CCfld |`s NN0 ) gsum ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
33 |
32
|
eqeq1d |
|- ( d = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> ( ( ( CCfld |`s NN0 ) gsum d ) = 1 <-> ( ( CCfld |`s NN0 ) gsum ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = 1 ) ) |
34 |
31 33
|
syl5ibrcom |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> ( ( CCfld |`s NN0 ) gsum d ) = 1 ) ) |
35 |
17 34
|
syld |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( V ` X ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = 1 ) ) |
36 |
35
|
ralrimiva |
|- ( ph -> A. d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( ( V ` X ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = 1 ) ) |
37 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
38 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
39 |
26
|
a1i |
|- ( ph -> 1 e. NN0 ) |
40 |
37 2 38 3 4 5
|
mvrcl |
|- ( ph -> ( V ` X ) e. ( Base ` ( I mPoly R ) ) ) |
41 |
1 37 38 8 7 3 4 39 40
|
ismhp3 |
|- ( ph -> ( ( V ` X ) e. ( H ` 1 ) <-> A. d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( ( V ` X ) ` d ) =/= ( 0g ` R ) -> ( ( CCfld |`s NN0 ) gsum d ) = 1 ) ) ) |
42 |
36 41
|
mpbird |
|- ( ph -> ( V ` X ) e. ( H ` 1 ) ) |