Step |
Hyp |
Ref |
Expression |
1 |
|
mhppwdeg.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhppwdeg.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhppwdeg.t |
⊢ 𝑇 = ( mulGrp ‘ 𝑃 ) |
4 |
|
mhppwdeg.e |
⊢ ↑ = ( .g ‘ 𝑇 ) |
5 |
|
mhppwdeg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
mhppwdeg.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
mhppwdeg.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
8 |
|
mhppwdeg.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
9 |
|
mhppwdeg.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑀 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 𝑋 ) = ( 0 ↑ 𝑋 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 0 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑥 = 0 → ( 𝐻 ‘ ( 𝑀 · 𝑥 ) ) = ( 𝐻 ‘ ( 𝑀 · 0 ) ) ) |
13 |
10 12
|
eleq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑥 ) ) ↔ ( 0 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 0 ) ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑋 ) = ( 𝑦 ↑ 𝑋 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 𝑦 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ ( 𝑀 · 𝑥 ) ) = ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) |
17 |
14 16
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑥 ) ) ↔ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ 𝑋 ) = ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) |
19 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑀 · 𝑥 ) = ( 𝑀 · ( 𝑦 + 1 ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐻 ‘ ( 𝑀 · 𝑥 ) ) = ( 𝐻 ‘ ( 𝑀 · ( 𝑦 + 1 ) ) ) ) |
21 |
18 20
|
eleq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑥 ) ) ↔ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · ( 𝑦 + 1 ) ) ) ) ) |
22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ 𝑋 ) = ( 𝑁 ↑ 𝑋 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 𝑁 ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐻 ‘ ( 𝑀 · 𝑥 ) ) = ( 𝐻 ‘ ( 𝑀 · 𝑁 ) ) ) |
25 |
22 24
|
eleq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑥 ) ) ↔ ( 𝑁 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑁 ) ) ) ) |
26 |
2 5 6
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
29 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
30 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
31 |
2
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
32 |
5 6 31
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
33 |
2
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
34 |
5 6 33
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
35 |
29 30 32 34
|
ascl1 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) = ( 1r ‘ 𝑃 ) ) |
36 |
28 35
|
eqtrd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
37 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
38 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
39 |
37 38
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
40 |
6 39
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
41 |
1 2 29 37 5 6 40
|
mhpsclcl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( 𝐻 ‘ 0 ) ) |
42 |
36 41
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ ( 𝐻 ‘ 0 ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
44 |
1 2 43 5 6 7 9
|
mhpmpl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
45 |
3 43
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑇 ) |
46 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
47 |
3 46
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑇 ) |
48 |
45 47 4
|
mulg0 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
49 |
44 48
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
50 |
7
|
nn0cnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
51 |
50
|
mul01d |
⊢ ( 𝜑 → ( 𝑀 · 0 ) = 0 ) |
52 |
51
|
fveq2d |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝑀 · 0 ) ) = ( 𝐻 ‘ 0 ) ) |
53 |
42 49 52
|
3eltr4d |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 0 ) ) ) |
54 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
55 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝐼 ∈ 𝑉 ) |
56 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝑅 ∈ Ring ) |
57 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝑀 ∈ ℕ0 ) |
58 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝑦 ∈ ℕ0 ) |
59 |
57 58
|
nn0mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( 𝑀 · 𝑦 ) ∈ ℕ0 ) |
60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) |
61 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝑋 ∈ ( 𝐻 ‘ 𝑀 ) ) |
62 |
1 2 54 55 56 59 57 60 61
|
mhpmulcl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑃 ) 𝑋 ) ∈ ( 𝐻 ‘ ( ( 𝑀 · 𝑦 ) + 𝑀 ) ) ) |
63 |
3
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑇 ∈ Mnd ) |
64 |
34 63
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝑇 ∈ Mnd ) |
66 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
67 |
3 54
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑇 ) |
68 |
45 4 67
|
mulgnn0p1 |
⊢ ( ( 𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) = ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑃 ) 𝑋 ) ) |
69 |
65 58 66 68
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) = ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑃 ) 𝑋 ) ) |
70 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝑀 ∈ ℂ ) |
71 |
58
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 𝑦 ∈ ℂ ) |
72 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → 1 ∈ ℂ ) |
73 |
70 71 72
|
adddid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( 𝑀 · ( 𝑦 + 1 ) ) = ( ( 𝑀 · 𝑦 ) + ( 𝑀 · 1 ) ) ) |
74 |
70
|
mulid1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( 𝑀 · 1 ) = 𝑀 ) |
75 |
74
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( ( 𝑀 · 𝑦 ) + ( 𝑀 · 1 ) ) = ( ( 𝑀 · 𝑦 ) + 𝑀 ) ) |
76 |
73 75
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( 𝑀 · ( 𝑦 + 1 ) ) = ( ( 𝑀 · 𝑦 ) + 𝑀 ) ) |
77 |
76
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( 𝐻 ‘ ( 𝑀 · ( 𝑦 + 1 ) ) ) = ( 𝐻 ‘ ( ( 𝑀 · 𝑦 ) + 𝑀 ) ) ) |
78 |
62 69 77
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑦 ) ) ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · ( 𝑦 + 1 ) ) ) ) |
79 |
13 17 21 25 53 78
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑁 ) ) ) |
80 |
8 79
|
mpdan |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝑋 ) ∈ ( 𝐻 ‘ ( 𝑀 · 𝑁 ) ) ) |