Description: Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppofssd.1 | |
|
suppofssd.2 | |
||
suppofssd.3 | |
||
suppofssd.4 | |
||
suppofssd.5 | |
||
Assertion | suppofssd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppofssd.1 | |
|
2 | suppofssd.2 | |
|
3 | suppofssd.3 | |
|
4 | suppofssd.4 | |
|
5 | suppofssd.5 | |
|
6 | ovexd | |
|
7 | inidm | |
|
8 | 6 3 4 1 1 7 | off | |
9 | eldif | |
|
10 | ioran | |
|
11 | elun | |
|
12 | 10 11 | xchnxbir | |
13 | 12 | anbi2i | |
14 | 9 13 | bitri | |
15 | 3 | ffnd | |
16 | elsuppfn | |
|
17 | 15 1 2 16 | syl3anc | |
18 | 17 | notbid | |
19 | 18 | biimpd | |
20 | 4 | ffnd | |
21 | elsuppfn | |
|
22 | 20 1 2 21 | syl3anc | |
23 | 22 | notbid | |
24 | 23 | biimpd | |
25 | 19 24 | anim12d | |
26 | 25 | anim2d | |
27 | 26 | imp | |
28 | pm3.2 | |
|
29 | 28 | necon1bd | |
30 | pm3.2 | |
|
31 | 30 | necon1bd | |
32 | 29 31 | anim12d | |
33 | 32 | imdistani | |
34 | 15 | adantr | |
35 | 20 | adantr | |
36 | 1 | adantr | |
37 | simprl | |
|
38 | fnfvof | |
|
39 | 34 35 36 37 38 | syl22anc | |
40 | oveq12 | |
|
41 | 40 | ad2antll | |
42 | 5 | adantr | |
43 | 39 41 42 | 3eqtrd | |
44 | 33 43 | sylan2 | |
45 | 27 44 | syldan | |
46 | 14 45 | sylan2b | |
47 | 8 46 | suppss | |