Metamath Proof Explorer


Theorem suppofssd

Description: Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023)

Ref Expression
Hypotheses suppofssd.1 φAV
suppofssd.2 φZB
suppofssd.3 φF:AB
suppofssd.4 φG:AB
suppofssd.5 φZXZ=Z
Assertion suppofssd φFXfGsuppZsuppZFsuppZG

Proof

Step Hyp Ref Expression
1 suppofssd.1 φAV
2 suppofssd.2 φZB
3 suppofssd.3 φF:AB
4 suppofssd.4 φG:AB
5 suppofssd.5 φZXZ=Z
6 ovexd φxByBxXyV
7 inidm AA=A
8 6 3 4 1 1 7 off φFXfG:AV
9 eldif kAsuppZFsuppZGkA¬ksuppZFsuppZG
10 ioran ¬ksuppZFksuppZG¬ksuppZF¬ksuppZG
11 elun ksuppZFsuppZGksuppZFksuppZG
12 10 11 xchnxbir ¬ksuppZFsuppZG¬ksuppZF¬ksuppZG
13 12 anbi2i kA¬ksuppZFsuppZGkA¬ksuppZF¬ksuppZG
14 9 13 bitri kAsuppZFsuppZGkA¬ksuppZF¬ksuppZG
15 3 ffnd φFFnA
16 elsuppfn FFnAAVZBksuppZFkAFkZ
17 15 1 2 16 syl3anc φksuppZFkAFkZ
18 17 notbid φ¬ksuppZF¬kAFkZ
19 18 biimpd φ¬ksuppZF¬kAFkZ
20 4 ffnd φGFnA
21 elsuppfn GFnAAVZBksuppZGkAGkZ
22 20 1 2 21 syl3anc φksuppZGkAGkZ
23 22 notbid φ¬ksuppZG¬kAGkZ
24 23 biimpd φ¬ksuppZG¬kAGkZ
25 19 24 anim12d φ¬ksuppZF¬ksuppZG¬kAFkZ¬kAGkZ
26 25 anim2d φkA¬ksuppZF¬ksuppZGkA¬kAFkZ¬kAGkZ
27 26 imp φkA¬ksuppZF¬ksuppZGkA¬kAFkZ¬kAGkZ
28 pm3.2 kAFkZkAFkZ
29 28 necon1bd kA¬kAFkZFk=Z
30 pm3.2 kAGkZkAGkZ
31 30 necon1bd kA¬kAGkZGk=Z
32 29 31 anim12d kA¬kAFkZ¬kAGkZFk=ZGk=Z
33 32 imdistani kA¬kAFkZ¬kAGkZkAFk=ZGk=Z
34 15 adantr φkAFk=ZGk=ZFFnA
35 20 adantr φkAFk=ZGk=ZGFnA
36 1 adantr φkAFk=ZGk=ZAV
37 simprl φkAFk=ZGk=ZkA
38 fnfvof FFnAGFnAAVkAFXfGk=FkXGk
39 34 35 36 37 38 syl22anc φkAFk=ZGk=ZFXfGk=FkXGk
40 oveq12 Fk=ZGk=ZFkXGk=ZXZ
41 40 ad2antll φkAFk=ZGk=ZFkXGk=ZXZ
42 5 adantr φkAFk=ZGk=ZZXZ=Z
43 39 41 42 3eqtrd φkAFk=ZGk=ZFXfGk=Z
44 33 43 sylan2 φkA¬kAFkZ¬kAGkZFXfGk=Z
45 27 44 syldan φkA¬ksuppZF¬ksuppZGFXfGk=Z
46 14 45 sylan2b φkAsuppZFsuppZGFXfGk=Z
47 8 46 suppss φFXfGsuppZsuppZFsuppZG