Description: A homogeneous polynomial defines a homogeneous function; this is mhphf with simpler notation in the conclusion in exchange for a complex definition of .xb , which is based on frlmvscafval but without the finite support restriction ( frlmpws , frlmbas ) on the assignments A from variables to values.
TODO?: Polynomials ( df-mpl ) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhphf2.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| mhphf2.h | |- H = ( I mHomP U ) |
||
| mhphf2.u | |- U = ( S |`s R ) |
||
| mhphf2.k | |- K = ( Base ` S ) |
||
| mhphf2.b | |- .xb = ( .s ` ( ( ringLMod ` S ) ^s I ) ) |
||
| mhphf2.m | |- .x. = ( .r ` S ) |
||
| mhphf2.e | |- .^ = ( .g ` ( mulGrp ` S ) ) |
||
| mhphf2.s | |- ( ph -> S e. CRing ) |
||
| mhphf2.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| mhphf2.l | |- ( ph -> L e. R ) |
||
| mhphf2.x | |- ( ph -> X e. ( H ` N ) ) |
||
| mhphf2.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| Assertion | mhphf2 | |- ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhphf2.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | mhphf2.h | |- H = ( I mHomP U ) |
|
| 3 | mhphf2.u | |- U = ( S |`s R ) |
|
| 4 | mhphf2.k | |- K = ( Base ` S ) |
|
| 5 | mhphf2.b | |- .xb = ( .s ` ( ( ringLMod ` S ) ^s I ) ) |
|
| 6 | mhphf2.m | |- .x. = ( .r ` S ) |
|
| 7 | mhphf2.e | |- .^ = ( .g ` ( mulGrp ` S ) ) |
|
| 8 | mhphf2.s | |- ( ph -> S e. CRing ) |
|
| 9 | mhphf2.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 10 | mhphf2.l | |- ( ph -> L e. R ) |
|
| 11 | mhphf2.x | |- ( ph -> X e. ( H ` N ) ) |
|
| 12 | mhphf2.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 13 | eqid | |- ( ( ringLMod ` S ) ^s I ) = ( ( ringLMod ` S ) ^s I ) |
|
| 14 | eqid | |- ( Base ` ( ( ringLMod ` S ) ^s I ) ) = ( Base ` ( ( ringLMod ` S ) ^s I ) ) |
|
| 15 | rlmvsca | |- ( .r ` S ) = ( .s ` ( ringLMod ` S ) ) |
|
| 16 | eqid | |- ( Scalar ` ( ringLMod ` S ) ) = ( Scalar ` ( ringLMod ` S ) ) |
|
| 17 | eqid | |- ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) = ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) |
|
| 18 | fvexd | |- ( ph -> ( ringLMod ` S ) e. _V ) |
|
| 19 | reldmmhp | |- Rel dom mHomP |
|
| 20 | 19 2 11 | elfvov1 | |- ( ph -> I e. _V ) |
| 21 | 4 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ K ) |
| 22 | 9 21 | syl | |- ( ph -> R C_ K ) |
| 23 | 22 10 | sseldd | |- ( ph -> L e. K ) |
| 24 | rlmsca | |- ( S e. CRing -> S = ( Scalar ` ( ringLMod ` S ) ) ) |
|
| 25 | 8 24 | syl | |- ( ph -> S = ( Scalar ` ( ringLMod ` S ) ) ) |
| 26 | 25 | fveq2d | |- ( ph -> ( Base ` S ) = ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) ) |
| 27 | 4 26 | eqtrid | |- ( ph -> K = ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) ) |
| 28 | 23 27 | eleqtrd | |- ( ph -> L e. ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) ) |
| 29 | 4 | oveq1i | |- ( K ^m I ) = ( ( Base ` S ) ^m I ) |
| 30 | 12 29 | eleqtrdi | |- ( ph -> A e. ( ( Base ` S ) ^m I ) ) |
| 31 | rlmbas | |- ( Base ` S ) = ( Base ` ( ringLMod ` S ) ) |
|
| 32 | 13 31 | pwsbas | |- ( ( ( ringLMod ` S ) e. _V /\ I e. _V ) -> ( ( Base ` S ) ^m I ) = ( Base ` ( ( ringLMod ` S ) ^s I ) ) ) |
| 33 | 18 20 32 | syl2anc | |- ( ph -> ( ( Base ` S ) ^m I ) = ( Base ` ( ( ringLMod ` S ) ^s I ) ) ) |
| 34 | 30 33 | eleqtrd | |- ( ph -> A e. ( Base ` ( ( ringLMod ` S ) ^s I ) ) ) |
| 35 | 13 14 15 5 16 17 18 20 28 34 | pwsvscafval | |- ( ph -> ( L .xb A ) = ( ( I X. { L } ) oF ( .r ` S ) A ) ) |
| 36 | 6 | eqcomi | |- ( .r ` S ) = .x. |
| 37 | ofeq | |- ( ( .r ` S ) = .x. -> oF ( .r ` S ) = oF .x. ) |
|
| 38 | 36 37 | mp1i | |- ( ph -> oF ( .r ` S ) = oF .x. ) |
| 39 | 38 | oveqd | |- ( ph -> ( ( I X. { L } ) oF ( .r ` S ) A ) = ( ( I X. { L } ) oF .x. A ) ) |
| 40 | 35 39 | eqtrd | |- ( ph -> ( L .xb A ) = ( ( I X. { L } ) oF .x. A ) ) |
| 41 | 40 | fveq2d | |- ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( Q ` X ) ` ( ( I X. { L } ) oF .x. A ) ) ) |
| 42 | 1 2 3 4 6 7 8 9 10 11 12 | mhphf | |- ( ph -> ( ( Q ` X ) ` ( ( I X. { L } ) oF .x. A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) ) |
| 43 | 41 42 | eqtrd | |- ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) ) |