Metamath Proof Explorer


Theorem mhphf2

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf with simpler notation in the conclusion in exchange for a complex definition of .xb , which is based on frlmvscafval but without the finite support restriction ( frlmpws , frlmbas ) on the assignments A from variables to values.

TODO?: Polynomials ( df-mpl ) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024)

Ref Expression
Hypotheses mhphf2.q
|- Q = ( ( I evalSub S ) ` R )
mhphf2.h
|- H = ( I mHomP U )
mhphf2.u
|- U = ( S |`s R )
mhphf2.k
|- K = ( Base ` S )
mhphf2.b
|- .xb = ( .s ` ( ( ringLMod ` S ) ^s I ) )
mhphf2.m
|- .x. = ( .r ` S )
mhphf2.e
|- .^ = ( .g ` ( mulGrp ` S ) )
mhphf2.i
|- ( ph -> I e. V )
mhphf2.s
|- ( ph -> S e. CRing )
mhphf2.r
|- ( ph -> R e. ( SubRing ` S ) )
mhphf2.l
|- ( ph -> L e. R )
mhphf2.n
|- ( ph -> N e. NN0 )
mhphf2.x
|- ( ph -> X e. ( H ` N ) )
mhphf2.a
|- ( ph -> A e. ( K ^m I ) )
Assertion mhphf2
|- ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) )

Proof

Step Hyp Ref Expression
1 mhphf2.q
 |-  Q = ( ( I evalSub S ) ` R )
2 mhphf2.h
 |-  H = ( I mHomP U )
3 mhphf2.u
 |-  U = ( S |`s R )
4 mhphf2.k
 |-  K = ( Base ` S )
5 mhphf2.b
 |-  .xb = ( .s ` ( ( ringLMod ` S ) ^s I ) )
6 mhphf2.m
 |-  .x. = ( .r ` S )
7 mhphf2.e
 |-  .^ = ( .g ` ( mulGrp ` S ) )
8 mhphf2.i
 |-  ( ph -> I e. V )
9 mhphf2.s
 |-  ( ph -> S e. CRing )
10 mhphf2.r
 |-  ( ph -> R e. ( SubRing ` S ) )
11 mhphf2.l
 |-  ( ph -> L e. R )
12 mhphf2.n
 |-  ( ph -> N e. NN0 )
13 mhphf2.x
 |-  ( ph -> X e. ( H ` N ) )
14 mhphf2.a
 |-  ( ph -> A e. ( K ^m I ) )
15 eqid
 |-  ( ( ringLMod ` S ) ^s I ) = ( ( ringLMod ` S ) ^s I )
16 eqid
 |-  ( Base ` ( ( ringLMod ` S ) ^s I ) ) = ( Base ` ( ( ringLMod ` S ) ^s I ) )
17 rlmvsca
 |-  ( .r ` S ) = ( .s ` ( ringLMod ` S ) )
18 eqid
 |-  ( Scalar ` ( ringLMod ` S ) ) = ( Scalar ` ( ringLMod ` S ) )
19 eqid
 |-  ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) = ( Base ` ( Scalar ` ( ringLMod ` S ) ) )
20 fvexd
 |-  ( ph -> ( ringLMod ` S ) e. _V )
21 4 subrgss
 |-  ( R e. ( SubRing ` S ) -> R C_ K )
22 10 21 syl
 |-  ( ph -> R C_ K )
23 22 11 sseldd
 |-  ( ph -> L e. K )
24 rlmsca
 |-  ( S e. CRing -> S = ( Scalar ` ( ringLMod ` S ) ) )
25 9 24 syl
 |-  ( ph -> S = ( Scalar ` ( ringLMod ` S ) ) )
26 25 fveq2d
 |-  ( ph -> ( Base ` S ) = ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) )
27 4 26 syl5eq
 |-  ( ph -> K = ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) )
28 23 27 eleqtrd
 |-  ( ph -> L e. ( Base ` ( Scalar ` ( ringLMod ` S ) ) ) )
29 4 oveq1i
 |-  ( K ^m I ) = ( ( Base ` S ) ^m I )
30 14 29 eleqtrdi
 |-  ( ph -> A e. ( ( Base ` S ) ^m I ) )
31 rlmbas
 |-  ( Base ` S ) = ( Base ` ( ringLMod ` S ) )
32 15 31 pwsbas
 |-  ( ( ( ringLMod ` S ) e. _V /\ I e. V ) -> ( ( Base ` S ) ^m I ) = ( Base ` ( ( ringLMod ` S ) ^s I ) ) )
33 20 8 32 syl2anc
 |-  ( ph -> ( ( Base ` S ) ^m I ) = ( Base ` ( ( ringLMod ` S ) ^s I ) ) )
34 30 33 eleqtrd
 |-  ( ph -> A e. ( Base ` ( ( ringLMod ` S ) ^s I ) ) )
35 15 16 17 5 18 19 20 8 28 34 pwsvscafval
 |-  ( ph -> ( L .xb A ) = ( ( I X. { L } ) oF ( .r ` S ) A ) )
36 6 eqcomi
 |-  ( .r ` S ) = .x.
37 ofeq
 |-  ( ( .r ` S ) = .x. -> oF ( .r ` S ) = oF .x. )
38 36 37 mp1i
 |-  ( ph -> oF ( .r ` S ) = oF .x. )
39 38 oveqd
 |-  ( ph -> ( ( I X. { L } ) oF ( .r ` S ) A ) = ( ( I X. { L } ) oF .x. A ) )
40 35 39 eqtrd
 |-  ( ph -> ( L .xb A ) = ( ( I X. { L } ) oF .x. A ) )
41 40 fveq2d
 |-  ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( Q ` X ) ` ( ( I X. { L } ) oF .x. A ) ) )
42 1 2 3 4 6 7 8 9 10 11 12 13 14 mhphf
 |-  ( ph -> ( ( Q ` X ) ` ( ( I X. { L } ) oF .x. A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) )
43 41 42 eqtrd
 |-  ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) )