Description: A homogeneous polynomial defines a homogeneous function; this is mhphf with simpler notation in the conclusion in exchange for a complex definition of .xb , which is based on frlmvscafval but without the finite support restriction ( frlmpws , frlmbas ) on the assignments A from variables to values.
TODO?: Polynomials ( df-mpl ) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhphf2.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
mhphf2.h | ⊢ 𝐻 = ( 𝐼 mHomP 𝑈 ) | ||
mhphf2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
mhphf2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
mhphf2.b | ⊢ ∙ = ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) ) | ||
mhphf2.m | ⊢ · = ( .r ‘ 𝑆 ) | ||
mhphf2.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | ||
mhphf2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
mhphf2.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
mhphf2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
mhphf2.l | ⊢ ( 𝜑 → 𝐿 ∈ 𝑅 ) | ||
mhphf2.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
mhphf2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) | ||
mhphf2.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
Assertion | mhphf2 | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( 𝐿 ∙ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhphf2.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
2 | mhphf2.h | ⊢ 𝐻 = ( 𝐼 mHomP 𝑈 ) | |
3 | mhphf2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
4 | mhphf2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
5 | mhphf2.b | ⊢ ∙ = ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) ) | |
6 | mhphf2.m | ⊢ · = ( .r ‘ 𝑆 ) | |
7 | mhphf2.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | |
8 | mhphf2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
9 | mhphf2.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
10 | mhphf2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
11 | mhphf2.l | ⊢ ( 𝜑 → 𝐿 ∈ 𝑅 ) | |
12 | mhphf2.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
13 | mhphf2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) | |
14 | mhphf2.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
15 | eqid | ⊢ ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) | |
16 | eqid | ⊢ ( Base ‘ ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) ) = ( Base ‘ ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) ) | |
17 | rlmvsca | ⊢ ( .r ‘ 𝑆 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑆 ) ) | |
18 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) | |
19 | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) ) | |
20 | fvexd | ⊢ ( 𝜑 → ( ringLMod ‘ 𝑆 ) ∈ V ) | |
21 | 4 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
22 | 10 21 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
23 | 22 11 | sseldd | ⊢ ( 𝜑 → 𝐿 ∈ 𝐾 ) |
24 | rlmsca | ⊢ ( 𝑆 ∈ CRing → 𝑆 = ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) ) | |
25 | 9 24 | syl | ⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) ) |
26 | 25 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) ) ) |
27 | 4 26 | syl5eq | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) ) ) |
28 | 23 27 | eleqtrd | ⊢ ( 𝜑 → 𝐿 ∈ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑆 ) ) ) ) |
29 | 4 | oveq1i | ⊢ ( 𝐾 ↑m 𝐼 ) = ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) |
30 | 14 29 | eleqtrdi | ⊢ ( 𝜑 → 𝐴 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) |
31 | rlmbas | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( ringLMod ‘ 𝑆 ) ) | |
32 | 15 31 | pwsbas | ⊢ ( ( ( ringLMod ‘ 𝑆 ) ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) = ( Base ‘ ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) ) ) |
33 | 20 8 32 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) = ( Base ‘ ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) ) ) |
34 | 30 33 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑆 ) ↑s 𝐼 ) ) ) |
35 | 15 16 17 5 18 19 20 8 28 34 | pwsvscafval | ⊢ ( 𝜑 → ( 𝐿 ∙ 𝐴 ) = ( ( 𝐼 × { 𝐿 } ) ∘f ( .r ‘ 𝑆 ) 𝐴 ) ) |
36 | 6 | eqcomi | ⊢ ( .r ‘ 𝑆 ) = · |
37 | ofeq | ⊢ ( ( .r ‘ 𝑆 ) = · → ∘f ( .r ‘ 𝑆 ) = ∘f · ) | |
38 | 36 37 | mp1i | ⊢ ( 𝜑 → ∘f ( .r ‘ 𝑆 ) = ∘f · ) |
39 | 38 | oveqd | ⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f ( .r ‘ 𝑆 ) 𝐴 ) = ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) |
40 | 35 39 | eqtrd | ⊢ ( 𝜑 → ( 𝐿 ∙ 𝐴 ) = ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) |
41 | 40 | fveq2d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( 𝐿 ∙ 𝐴 ) ) = ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
42 | 1 2 3 4 6 7 8 9 10 11 12 13 14 | mhphf | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |
43 | 41 42 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( 𝐿 ∙ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |