Metamath Proof Explorer


Theorem mhphf2

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf with simpler notation in the conclusion in exchange for a complex definition of .xb , which is based on frlmvscafval but without the finite support restriction ( frlmpws , frlmbas ) on the assignments A from variables to values.

TODO?: Polynomials ( df-mpl ) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024)

Ref Expression
Hypotheses mhphf2.q Q=IevalSubSR
mhphf2.h H=ImHomPU
mhphf2.u U=S𝑠R
mhphf2.k K=BaseS
mhphf2.b ˙=ringLModS𝑠I
mhphf2.m ·˙=S
mhphf2.e ×˙=mulGrpS
mhphf2.i φIV
mhphf2.s φSCRing
mhphf2.r φRSubRingS
mhphf2.l φLR
mhphf2.n φN0
mhphf2.x φXHN
mhphf2.a φAKI
Assertion mhphf2 φQXL˙A=N×˙L·˙QXA

Proof

Step Hyp Ref Expression
1 mhphf2.q Q=IevalSubSR
2 mhphf2.h H=ImHomPU
3 mhphf2.u U=S𝑠R
4 mhphf2.k K=BaseS
5 mhphf2.b ˙=ringLModS𝑠I
6 mhphf2.m ·˙=S
7 mhphf2.e ×˙=mulGrpS
8 mhphf2.i φIV
9 mhphf2.s φSCRing
10 mhphf2.r φRSubRingS
11 mhphf2.l φLR
12 mhphf2.n φN0
13 mhphf2.x φXHN
14 mhphf2.a φAKI
15 eqid ringLModS𝑠I=ringLModS𝑠I
16 eqid BaseringLModS𝑠I=BaseringLModS𝑠I
17 rlmvsca S=ringLModS
18 eqid ScalarringLModS=ScalarringLModS
19 eqid BaseScalarringLModS=BaseScalarringLModS
20 fvexd φringLModSV
21 4 subrgss RSubRingSRK
22 10 21 syl φRK
23 22 11 sseldd φLK
24 rlmsca SCRingS=ScalarringLModS
25 9 24 syl φS=ScalarringLModS
26 25 fveq2d φBaseS=BaseScalarringLModS
27 4 26 eqtrid φK=BaseScalarringLModS
28 23 27 eleqtrd φLBaseScalarringLModS
29 4 oveq1i KI=BaseSI
30 14 29 eleqtrdi φABaseSI
31 rlmbas BaseS=BaseringLModS
32 15 31 pwsbas ringLModSVIVBaseSI=BaseringLModS𝑠I
33 20 8 32 syl2anc φBaseSI=BaseringLModS𝑠I
34 30 33 eleqtrd φABaseringLModS𝑠I
35 15 16 17 5 18 19 20 8 28 34 pwsvscafval φL˙A=I×LSfA
36 6 eqcomi S=·˙
37 ofeq S=·˙fS=f·˙
38 36 37 mp1i φfS=f·˙
39 38 oveqd φI×LSfA=I×L·˙fA
40 35 39 eqtrd φL˙A=I×L·˙fA
41 40 fveq2d φQXL˙A=QXI×L·˙fA
42 1 2 3 4 6 7 8 9 10 11 12 13 14 mhphf φQXI×L·˙fA=N×˙L·˙QXA
43 41 42 eqtrd φQXL˙A=N×˙L·˙QXA