Step |
Hyp |
Ref |
Expression |
1 |
|
mhpind.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpind.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
mhpind.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mhpind.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
5 |
|
mhpind.a |
⊢ + = ( +g ‘ 𝑃 ) |
6 |
|
mhpind.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
7 |
|
mhpind.s |
⊢ 𝑆 = { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
8 |
|
mhpind.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
9 |
|
mhpind.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
10 |
|
mhpind.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
mhpind.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
12 |
|
mhpind.0 |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐺 ) |
13 |
|
mhpind.1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐺 ) |
14 |
|
mhpind.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐺 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
16 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) |
17 |
6 16
|
rabexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
18 |
|
ssrab2 |
⊢ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ⊆ 𝐷 |
19 |
18
|
a1i |
⊢ ( 𝜑 → { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ⊆ 𝐷 ) |
20 |
1 3 6 8 9 10
|
mhp0cl |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ ( 𝐻 ‘ 𝑁 ) ) |
21 |
20 12
|
elind |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) |
22 |
7
|
eleq2i |
⊢ ( 𝑎 ∈ 𝑆 ↔ 𝑎 ∈ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
23 |
22
|
biimpri |
⊢ ( 𝑎 ∈ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑎 ∈ 𝑆 ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
25 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
26 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑅 ∈ Grp ) |
27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
28 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑠 ∈ 𝐷 ) → 𝑏 ∈ 𝐵 ) |
29 |
2 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
30 |
9 29
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑠 ∈ 𝐷 ) → 0 ∈ 𝐵 ) |
32 |
28 31
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑠 ∈ 𝐷 ) → if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ∈ 𝐵 ) |
33 |
32
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) : 𝐷 ⟶ 𝐵 ) |
34 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
35 |
34
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
36 |
35 17
|
elmapd |
⊢ ( 𝜑 → ( ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( 𝐵 ↑m 𝐷 ) ↔ ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) : 𝐷 ⟶ 𝐵 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( 𝐵 ↑m 𝐷 ) ↔ ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) : 𝐷 ⟶ 𝐵 ) ) |
38 |
33 37
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( 𝐵 ↑m 𝐷 ) ) |
39 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
40 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
41 |
39 2 6 40 8
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝐵 ↑m 𝐷 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝐵 ↑m 𝐷 ) ) |
43 |
38 42
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
44 |
3
|
fvexi |
⊢ 0 ∈ V |
45 |
44
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
46 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) = ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) |
47 |
17 45 46
|
sniffsupp |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) finSupp 0 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) finSupp 0 ) |
49 |
4 39 40 3 24
|
mplelbas |
⊢ ( ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( Base ‘ 𝑃 ) ↔ ( ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) finSupp 0 ) ) |
50 |
43 48 49
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( Base ‘ 𝑃 ) ) |
51 |
|
elneeldif |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑠 ∈ ( 𝐷 ∖ 𝑆 ) ) → 𝑎 ≠ 𝑠 ) |
52 |
51
|
necomd |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑠 ∈ ( 𝐷 ∖ 𝑆 ) ) → 𝑠 ≠ 𝑎 ) |
53 |
52
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑠 ∈ ( 𝐷 ∖ 𝑆 ) ) → 𝑠 ≠ 𝑎 ) |
54 |
53
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑠 ∈ ( 𝐷 ∖ 𝑆 ) ) → 𝑠 ≠ 𝑎 ) |
55 |
54
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑠 ∈ ( 𝐷 ∖ 𝑆 ) ) → ¬ 𝑠 = 𝑎 ) |
56 |
55
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑠 ∈ ( 𝐷 ∖ 𝑆 ) ) → if ( 𝑠 = 𝑎 , 𝑏 , 0 ) = 0 ) |
57 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
58 |
56 57
|
suppss2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) supp 0 ) ⊆ 𝑆 ) |
59 |
58 7
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
60 |
1 4 24 3 6 25 26 27 50 59
|
ismhp2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( 𝐻 ‘ 𝑁 ) ) |
61 |
60 13
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) |
62 |
23 61
|
sylanr1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝑎 , 𝑏 , 0 ) ) ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) |
63 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → 𝐼 ∈ 𝑉 ) |
64 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → 𝑅 ∈ Grp ) |
65 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → 𝑁 ∈ ℕ0 ) |
66 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) → 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) |
67 |
66
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) |
68 |
1 4 24 63 64 65 67
|
mhpmpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) |
69 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) → 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) |
70 |
69
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) |
71 |
1 4 24 63 64 65 70
|
mhpmpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑃 ) ) |
72 |
4 24 15 5 68 71
|
mpladd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
73 |
1 4 5 63 64 65 67 70
|
mhpaddcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 𝐻 ‘ 𝑁 ) ) |
74 |
73 14
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) |
75 |
72 74
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) ) → ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) |
76 |
1 4 24 8 9 10 11
|
mhpmpl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
77 |
4 2 24 6 76
|
mplelf |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ 𝐵 ) |
78 |
4 24 3 76 9
|
mplelsfi |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
79 |
1 3 6 8 9 10 11
|
mhpdeg |
⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
80 |
2 3 15 9 17 19 21 62 75 77 78 79
|
fsuppssind |
⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ 𝐺 ) ) |
81 |
80
|
elin2d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐺 ) |