Step |
Hyp |
Ref |
Expression |
1 |
|
mhpind.h |
|- H = ( I mHomP R ) |
2 |
|
mhpind.b |
|- B = ( Base ` R ) |
3 |
|
mhpind.z |
|- .0. = ( 0g ` R ) |
4 |
|
mhpind.p |
|- P = ( I mPoly R ) |
5 |
|
mhpind.a |
|- .+ = ( +g ` P ) |
6 |
|
mhpind.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
7 |
|
mhpind.s |
|- S = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } |
8 |
|
mhpind.r |
|- ( ph -> R e. Grp ) |
9 |
|
mhpind.x |
|- ( ph -> X e. ( H ` N ) ) |
10 |
|
mhpind.0 |
|- ( ph -> ( D X. { .0. } ) e. G ) |
11 |
|
mhpind.1 |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. G ) |
12 |
|
mhpind.2 |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x .+ y ) e. G ) |
13 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
14 |
|
ovexd |
|- ( ph -> ( NN0 ^m I ) e. _V ) |
15 |
6 14
|
rabexd |
|- ( ph -> D e. _V ) |
16 |
|
ssrab2 |
|- { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } C_ D |
17 |
16
|
a1i |
|- ( ph -> { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } C_ D ) |
18 |
|
reldmmhp |
|- Rel dom mHomP |
19 |
18 1 9
|
elfvov1 |
|- ( ph -> I e. _V ) |
20 |
1 9
|
mhprcl |
|- ( ph -> N e. NN0 ) |
21 |
1 3 6 19 8 20
|
mhp0cl |
|- ( ph -> ( D X. { .0. } ) e. ( H ` N ) ) |
22 |
21 10
|
elind |
|- ( ph -> ( D X. { .0. } ) e. ( ( H ` N ) i^i G ) ) |
23 |
7
|
eleq2i |
|- ( a e. S <-> a e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
24 |
23
|
biimpri |
|- ( a e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } -> a e. S ) |
25 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
26 |
20
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> N e. NN0 ) |
27 |
|
simplrr |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. D ) -> b e. B ) |
28 |
2 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
29 |
8 28
|
syl |
|- ( ph -> .0. e. B ) |
30 |
29
|
ad2antrr |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. D ) -> .0. e. B ) |
31 |
27 30
|
ifcld |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. D ) -> if ( s = a , b , .0. ) e. B ) |
32 |
31
|
fmpttd |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) : D --> B ) |
33 |
2
|
fvexi |
|- B e. _V |
34 |
33
|
a1i |
|- ( ph -> B e. _V ) |
35 |
34 15
|
elmapd |
|- ( ph -> ( ( s e. D |-> if ( s = a , b , .0. ) ) e. ( B ^m D ) <-> ( s e. D |-> if ( s = a , b , .0. ) ) : D --> B ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( ( s e. D |-> if ( s = a , b , .0. ) ) e. ( B ^m D ) <-> ( s e. D |-> if ( s = a , b , .0. ) ) : D --> B ) ) |
37 |
32 36
|
mpbird |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( B ^m D ) ) |
38 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
39 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
40 |
38 2 6 39 19
|
psrbas |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( B ^m D ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( Base ` ( I mPwSer R ) ) = ( B ^m D ) ) |
42 |
37 41
|
eleqtrrd |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( Base ` ( I mPwSer R ) ) ) |
43 |
3
|
fvexi |
|- .0. e. _V |
44 |
43
|
a1i |
|- ( ph -> .0. e. _V ) |
45 |
|
eqid |
|- ( s e. D |-> if ( s = a , b , .0. ) ) = ( s e. D |-> if ( s = a , b , .0. ) ) |
46 |
15 44 45
|
sniffsupp |
|- ( ph -> ( s e. D |-> if ( s = a , b , .0. ) ) finSupp .0. ) |
47 |
46
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) finSupp .0. ) |
48 |
4 38 39 3 25
|
mplelbas |
|- ( ( s e. D |-> if ( s = a , b , .0. ) ) e. ( Base ` P ) <-> ( ( s e. D |-> if ( s = a , b , .0. ) ) e. ( Base ` ( I mPwSer R ) ) /\ ( s e. D |-> if ( s = a , b , .0. ) ) finSupp .0. ) ) |
49 |
42 47 48
|
sylanbrc |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( Base ` P ) ) |
50 |
|
elneeldif |
|- ( ( a e. S /\ s e. ( D \ S ) ) -> a =/= s ) |
51 |
50
|
necomd |
|- ( ( a e. S /\ s e. ( D \ S ) ) -> s =/= a ) |
52 |
51
|
adantll |
|- ( ( ( ph /\ a e. S ) /\ s e. ( D \ S ) ) -> s =/= a ) |
53 |
52
|
adantlrr |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. ( D \ S ) ) -> s =/= a ) |
54 |
53
|
neneqd |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. ( D \ S ) ) -> -. s = a ) |
55 |
54
|
iffalsed |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. ( D \ S ) ) -> if ( s = a , b , .0. ) = .0. ) |
56 |
15
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> D e. _V ) |
57 |
55 56
|
suppss2 |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( ( s e. D |-> if ( s = a , b , .0. ) ) supp .0. ) C_ S ) |
58 |
57 7
|
sseqtrdi |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( ( s e. D |-> if ( s = a , b , .0. ) ) supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
59 |
1 4 25 3 6 26 49 58
|
ismhp2 |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( H ` N ) ) |
60 |
59 11
|
elind |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( ( H ` N ) i^i G ) ) |
61 |
24 60
|
sylanr1 |
|- ( ( ph /\ ( a e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( ( H ` N ) i^i G ) ) |
62 |
|
elinel1 |
|- ( x e. ( ( H ` N ) i^i G ) -> x e. ( H ` N ) ) |
63 |
62
|
ad2antrl |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> x e. ( H ` N ) ) |
64 |
1 4 25 63
|
mhpmpl |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> x e. ( Base ` P ) ) |
65 |
|
elinel1 |
|- ( y e. ( ( H ` N ) i^i G ) -> y e. ( H ` N ) ) |
66 |
65
|
ad2antll |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> y e. ( H ` N ) ) |
67 |
1 4 25 66
|
mhpmpl |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> y e. ( Base ` P ) ) |
68 |
4 25 13 5 64 67
|
mpladd |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x .+ y ) = ( x oF ( +g ` R ) y ) ) |
69 |
8
|
adantr |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> R e. Grp ) |
70 |
1 4 5 69 63 66
|
mhpaddcl |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x .+ y ) e. ( H ` N ) ) |
71 |
70 12
|
elind |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x .+ y ) e. ( ( H ` N ) i^i G ) ) |
72 |
68 71
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x oF ( +g ` R ) y ) e. ( ( H ` N ) i^i G ) ) |
73 |
1 4 25 9
|
mhpmpl |
|- ( ph -> X e. ( Base ` P ) ) |
74 |
4 2 25 6 73
|
mplelf |
|- ( ph -> X : D --> B ) |
75 |
4 25 3 73
|
mplelsfi |
|- ( ph -> X finSupp .0. ) |
76 |
1 3 6 9
|
mhpdeg |
|- ( ph -> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
77 |
2 3 13 8 15 17 22 61 72 74 75 76
|
fsuppssind |
|- ( ph -> X e. ( ( H ` N ) i^i G ) ) |
78 |
77
|
elin2d |
|- ( ph -> X e. G ) |