Step |
Hyp |
Ref |
Expression |
1 |
|
mhpind.h |
|- H = ( I mHomP R ) |
2 |
|
mhpind.b |
|- B = ( Base ` R ) |
3 |
|
mhpind.z |
|- .0. = ( 0g ` R ) |
4 |
|
mhpind.p |
|- P = ( I mPoly R ) |
5 |
|
mhpind.a |
|- .+ = ( +g ` P ) |
6 |
|
mhpind.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
7 |
|
mhpind.s |
|- S = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } |
8 |
|
mhpind.i |
|- ( ph -> I e. V ) |
9 |
|
mhpind.r |
|- ( ph -> R e. Grp ) |
10 |
|
mhpind.n |
|- ( ph -> N e. NN0 ) |
11 |
|
mhpind.x |
|- ( ph -> X e. ( H ` N ) ) |
12 |
|
mhpind.0 |
|- ( ph -> ( D X. { .0. } ) e. G ) |
13 |
|
mhpind.1 |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. G ) |
14 |
|
mhpind.2 |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x .+ y ) e. G ) |
15 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
16 |
|
ovexd |
|- ( ph -> ( NN0 ^m I ) e. _V ) |
17 |
6 16
|
rabexd |
|- ( ph -> D e. _V ) |
18 |
|
ssrab2 |
|- { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } C_ D |
19 |
18
|
a1i |
|- ( ph -> { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } C_ D ) |
20 |
1 3 6 8 9 10
|
mhp0cl |
|- ( ph -> ( D X. { .0. } ) e. ( H ` N ) ) |
21 |
20 12
|
elind |
|- ( ph -> ( D X. { .0. } ) e. ( ( H ` N ) i^i G ) ) |
22 |
7
|
eleq2i |
|- ( a e. S <-> a e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
23 |
22
|
biimpri |
|- ( a e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } -> a e. S ) |
24 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
25 |
8
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> I e. V ) |
26 |
9
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> R e. Grp ) |
27 |
10
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> N e. NN0 ) |
28 |
|
simplrr |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. D ) -> b e. B ) |
29 |
2 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
30 |
9 29
|
syl |
|- ( ph -> .0. e. B ) |
31 |
30
|
ad2antrr |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. D ) -> .0. e. B ) |
32 |
28 31
|
ifcld |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. D ) -> if ( s = a , b , .0. ) e. B ) |
33 |
32
|
fmpttd |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) : D --> B ) |
34 |
2
|
fvexi |
|- B e. _V |
35 |
34
|
a1i |
|- ( ph -> B e. _V ) |
36 |
35 17
|
elmapd |
|- ( ph -> ( ( s e. D |-> if ( s = a , b , .0. ) ) e. ( B ^m D ) <-> ( s e. D |-> if ( s = a , b , .0. ) ) : D --> B ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( ( s e. D |-> if ( s = a , b , .0. ) ) e. ( B ^m D ) <-> ( s e. D |-> if ( s = a , b , .0. ) ) : D --> B ) ) |
38 |
33 37
|
mpbird |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( B ^m D ) ) |
39 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
40 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
41 |
39 2 6 40 8
|
psrbas |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( B ^m D ) ) |
42 |
41
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( Base ` ( I mPwSer R ) ) = ( B ^m D ) ) |
43 |
38 42
|
eleqtrrd |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( Base ` ( I mPwSer R ) ) ) |
44 |
3
|
fvexi |
|- .0. e. _V |
45 |
44
|
a1i |
|- ( ph -> .0. e. _V ) |
46 |
|
eqid |
|- ( s e. D |-> if ( s = a , b , .0. ) ) = ( s e. D |-> if ( s = a , b , .0. ) ) |
47 |
17 45 46
|
sniffsupp |
|- ( ph -> ( s e. D |-> if ( s = a , b , .0. ) ) finSupp .0. ) |
48 |
47
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) finSupp .0. ) |
49 |
4 39 40 3 24
|
mplelbas |
|- ( ( s e. D |-> if ( s = a , b , .0. ) ) e. ( Base ` P ) <-> ( ( s e. D |-> if ( s = a , b , .0. ) ) e. ( Base ` ( I mPwSer R ) ) /\ ( s e. D |-> if ( s = a , b , .0. ) ) finSupp .0. ) ) |
50 |
43 48 49
|
sylanbrc |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( Base ` P ) ) |
51 |
|
elneeldif |
|- ( ( a e. S /\ s e. ( D \ S ) ) -> a =/= s ) |
52 |
51
|
necomd |
|- ( ( a e. S /\ s e. ( D \ S ) ) -> s =/= a ) |
53 |
52
|
adantll |
|- ( ( ( ph /\ a e. S ) /\ s e. ( D \ S ) ) -> s =/= a ) |
54 |
53
|
adantlrr |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. ( D \ S ) ) -> s =/= a ) |
55 |
54
|
neneqd |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. ( D \ S ) ) -> -. s = a ) |
56 |
55
|
iffalsed |
|- ( ( ( ph /\ ( a e. S /\ b e. B ) ) /\ s e. ( D \ S ) ) -> if ( s = a , b , .0. ) = .0. ) |
57 |
17
|
adantr |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> D e. _V ) |
58 |
56 57
|
suppss2 |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( ( s e. D |-> if ( s = a , b , .0. ) ) supp .0. ) C_ S ) |
59 |
58 7
|
sseqtrdi |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( ( s e. D |-> if ( s = a , b , .0. ) ) supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
60 |
1 4 24 3 6 25 26 27 50 59
|
ismhp2 |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( H ` N ) ) |
61 |
60 13
|
elind |
|- ( ( ph /\ ( a e. S /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( ( H ` N ) i^i G ) ) |
62 |
23 61
|
sylanr1 |
|- ( ( ph /\ ( a e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } /\ b e. B ) ) -> ( s e. D |-> if ( s = a , b , .0. ) ) e. ( ( H ` N ) i^i G ) ) |
63 |
8
|
adantr |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> I e. V ) |
64 |
9
|
adantr |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> R e. Grp ) |
65 |
10
|
adantr |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> N e. NN0 ) |
66 |
|
elinel1 |
|- ( x e. ( ( H ` N ) i^i G ) -> x e. ( H ` N ) ) |
67 |
66
|
ad2antrl |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> x e. ( H ` N ) ) |
68 |
1 4 24 63 64 65 67
|
mhpmpl |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> x e. ( Base ` P ) ) |
69 |
|
elinel1 |
|- ( y e. ( ( H ` N ) i^i G ) -> y e. ( H ` N ) ) |
70 |
69
|
ad2antll |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> y e. ( H ` N ) ) |
71 |
1 4 24 63 64 65 70
|
mhpmpl |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> y e. ( Base ` P ) ) |
72 |
4 24 15 5 68 71
|
mpladd |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x .+ y ) = ( x oF ( +g ` R ) y ) ) |
73 |
1 4 5 63 64 65 67 70
|
mhpaddcl |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x .+ y ) e. ( H ` N ) ) |
74 |
73 14
|
elind |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x .+ y ) e. ( ( H ` N ) i^i G ) ) |
75 |
72 74
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( H ` N ) i^i G ) /\ y e. ( ( H ` N ) i^i G ) ) ) -> ( x oF ( +g ` R ) y ) e. ( ( H ` N ) i^i G ) ) |
76 |
1 4 24 8 9 10 11
|
mhpmpl |
|- ( ph -> X e. ( Base ` P ) ) |
77 |
4 2 24 6 76
|
mplelf |
|- ( ph -> X : D --> B ) |
78 |
4 24 3 76 9
|
mplelsfi |
|- ( ph -> X finSupp .0. ) |
79 |
1 3 6 8 9 10 11
|
mhpdeg |
|- ( ph -> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
80 |
2 3 15 9 17 19 21 62 75 77 78 79
|
fsuppssind |
|- ( ph -> X e. ( ( H ` N ) i^i G ) ) |
81 |
80
|
elin2d |
|- ( ph -> X e. G ) |