Metamath Proof Explorer


Theorem mhpind

Description: The homogeneous polynomials of degree N are generated by the terms of degree N and addition. (Contributed by SN, 28-Jul-2024)

Ref Expression
Hypotheses mhpind.h H = I mHomP R
mhpind.b B = Base R
mhpind.z 0 ˙ = 0 R
mhpind.p P = I mPoly R
mhpind.a + ˙ = + P
mhpind.d D = h 0 I | h -1 Fin
mhpind.s S = g D | fld 𝑠 0 g = N
mhpind.r φ R Grp
mhpind.x φ X H N
mhpind.0 φ D × 0 ˙ G
mhpind.1 φ a S b B s D if s = a b 0 ˙ G
mhpind.2 φ x H N G y H N G x + ˙ y G
Assertion mhpind φ X G

Proof

Step Hyp Ref Expression
1 mhpind.h H = I mHomP R
2 mhpind.b B = Base R
3 mhpind.z 0 ˙ = 0 R
4 mhpind.p P = I mPoly R
5 mhpind.a + ˙ = + P
6 mhpind.d D = h 0 I | h -1 Fin
7 mhpind.s S = g D | fld 𝑠 0 g = N
8 mhpind.r φ R Grp
9 mhpind.x φ X H N
10 mhpind.0 φ D × 0 ˙ G
11 mhpind.1 φ a S b B s D if s = a b 0 ˙ G
12 mhpind.2 φ x H N G y H N G x + ˙ y G
13 eqid + R = + R
14 ovexd φ 0 I V
15 6 14 rabexd φ D V
16 ssrab2 g D | fld 𝑠 0 g = N D
17 16 a1i φ g D | fld 𝑠 0 g = N D
18 reldmmhp Rel dom mHomP
19 18 1 9 elfvov1 φ I V
20 1 9 mhprcl φ N 0
21 1 3 6 19 8 20 mhp0cl φ D × 0 ˙ H N
22 21 10 elind φ D × 0 ˙ H N G
23 7 eleq2i a S a g D | fld 𝑠 0 g = N
24 23 biimpri a g D | fld 𝑠 0 g = N a S
25 eqid Base P = Base P
26 20 adantr φ a S b B N 0
27 simplrr φ a S b B s D b B
28 2 3 grpidcl R Grp 0 ˙ B
29 8 28 syl φ 0 ˙ B
30 29 ad2antrr φ a S b B s D 0 ˙ B
31 27 30 ifcld φ a S b B s D if s = a b 0 ˙ B
32 31 fmpttd φ a S b B s D if s = a b 0 ˙ : D B
33 2 fvexi B V
34 33 a1i φ B V
35 34 15 elmapd φ s D if s = a b 0 ˙ B D s D if s = a b 0 ˙ : D B
36 35 adantr φ a S b B s D if s = a b 0 ˙ B D s D if s = a b 0 ˙ : D B
37 32 36 mpbird φ a S b B s D if s = a b 0 ˙ B D
38 eqid I mPwSer R = I mPwSer R
39 eqid Base I mPwSer R = Base I mPwSer R
40 38 2 6 39 19 psrbas φ Base I mPwSer R = B D
41 40 adantr φ a S b B Base I mPwSer R = B D
42 37 41 eleqtrrd φ a S b B s D if s = a b 0 ˙ Base I mPwSer R
43 3 fvexi 0 ˙ V
44 43 a1i φ 0 ˙ V
45 eqid s D if s = a b 0 ˙ = s D if s = a b 0 ˙
46 15 44 45 sniffsupp φ finSupp 0 ˙ s D if s = a b 0 ˙
47 46 adantr φ a S b B finSupp 0 ˙ s D if s = a b 0 ˙
48 4 38 39 3 25 mplelbas s D if s = a b 0 ˙ Base P s D if s = a b 0 ˙ Base I mPwSer R finSupp 0 ˙ s D if s = a b 0 ˙
49 42 47 48 sylanbrc φ a S b B s D if s = a b 0 ˙ Base P
50 elneeldif a S s D S a s
51 50 necomd a S s D S s a
52 51 adantll φ a S s D S s a
53 52 adantlrr φ a S b B s D S s a
54 53 neneqd φ a S b B s D S ¬ s = a
55 54 iffalsed φ a S b B s D S if s = a b 0 ˙ = 0 ˙
56 15 adantr φ a S b B D V
57 55 56 suppss2 φ a S b B s D if s = a b 0 ˙ supp 0 ˙ S
58 57 7 sseqtrdi φ a S b B s D if s = a b 0 ˙ supp 0 ˙ g D | fld 𝑠 0 g = N
59 1 4 25 3 6 26 49 58 ismhp2 φ a S b B s D if s = a b 0 ˙ H N
60 59 11 elind φ a S b B s D if s = a b 0 ˙ H N G
61 24 60 sylanr1 φ a g D | fld 𝑠 0 g = N b B s D if s = a b 0 ˙ H N G
62 elinel1 x H N G x H N
63 62 ad2antrl φ x H N G y H N G x H N
64 1 4 25 63 mhpmpl φ x H N G y H N G x Base P
65 elinel1 y H N G y H N
66 65 ad2antll φ x H N G y H N G y H N
67 1 4 25 66 mhpmpl φ x H N G y H N G y Base P
68 4 25 13 5 64 67 mpladd φ x H N G y H N G x + ˙ y = x + R f y
69 8 adantr φ x H N G y H N G R Grp
70 1 4 5 69 63 66 mhpaddcl φ x H N G y H N G x + ˙ y H N
71 70 12 elind φ x H N G y H N G x + ˙ y H N G
72 68 71 eqeltrrd φ x H N G y H N G x + R f y H N G
73 1 4 25 9 mhpmpl φ X Base P
74 4 2 25 6 73 mplelf φ X : D B
75 4 25 3 73 mplelsfi φ finSupp 0 ˙ X
76 1 3 6 9 mhpdeg φ X supp 0 ˙ g D | fld 𝑠 0 g = N
77 2 3 13 8 15 17 22 61 72 74 75 76 fsuppssind φ X H N G
78 77 elin2d φ X G