Metamath Proof Explorer


Theorem mhpind

Description: The homogeneous polynomials of degree N are generated by the terms of degree N and addition. (Contributed by SN, 28-Jul-2024)

Ref Expression
Hypotheses mhpind.h H = I mHomP R
mhpind.b B = Base R
mhpind.z 0 ˙ = 0 R
mhpind.p P = I mPoly R
mhpind.a + ˙ = + P
mhpind.d D = h 0 I | h -1 Fin
mhpind.s S = g D | fld 𝑠 0 g = N
mhpind.i φ I V
mhpind.r φ R Grp
mhpind.n φ N 0
mhpind.x φ X H N
mhpind.0 φ D × 0 ˙ G
mhpind.1 φ a S b B s D if s = a b 0 ˙ G
mhpind.2 φ x H N G y H N G x + ˙ y G
Assertion mhpind φ X G

Proof

Step Hyp Ref Expression
1 mhpind.h H = I mHomP R
2 mhpind.b B = Base R
3 mhpind.z 0 ˙ = 0 R
4 mhpind.p P = I mPoly R
5 mhpind.a + ˙ = + P
6 mhpind.d D = h 0 I | h -1 Fin
7 mhpind.s S = g D | fld 𝑠 0 g = N
8 mhpind.i φ I V
9 mhpind.r φ R Grp
10 mhpind.n φ N 0
11 mhpind.x φ X H N
12 mhpind.0 φ D × 0 ˙ G
13 mhpind.1 φ a S b B s D if s = a b 0 ˙ G
14 mhpind.2 φ x H N G y H N G x + ˙ y G
15 eqid + R = + R
16 ovexd φ 0 I V
17 6 16 rabexd φ D V
18 ssrab2 g D | fld 𝑠 0 g = N D
19 18 a1i φ g D | fld 𝑠 0 g = N D
20 1 3 6 8 9 10 mhp0cl φ D × 0 ˙ H N
21 20 12 elind φ D × 0 ˙ H N G
22 7 eleq2i a S a g D | fld 𝑠 0 g = N
23 22 biimpri a g D | fld 𝑠 0 g = N a S
24 eqid Base P = Base P
25 8 adantr φ a S b B I V
26 9 adantr φ a S b B R Grp
27 10 adantr φ a S b B N 0
28 simplrr φ a S b B s D b B
29 2 3 grpidcl R Grp 0 ˙ B
30 9 29 syl φ 0 ˙ B
31 30 ad2antrr φ a S b B s D 0 ˙ B
32 28 31 ifcld φ a S b B s D if s = a b 0 ˙ B
33 32 fmpttd φ a S b B s D if s = a b 0 ˙ : D B
34 2 fvexi B V
35 34 a1i φ B V
36 35 17 elmapd φ s D if s = a b 0 ˙ B D s D if s = a b 0 ˙ : D B
37 36 adantr φ a S b B s D if s = a b 0 ˙ B D s D if s = a b 0 ˙ : D B
38 33 37 mpbird φ a S b B s D if s = a b 0 ˙ B D
39 eqid I mPwSer R = I mPwSer R
40 eqid Base I mPwSer R = Base I mPwSer R
41 39 2 6 40 8 psrbas φ Base I mPwSer R = B D
42 41 adantr φ a S b B Base I mPwSer R = B D
43 38 42 eleqtrrd φ a S b B s D if s = a b 0 ˙ Base I mPwSer R
44 3 fvexi 0 ˙ V
45 44 a1i φ 0 ˙ V
46 eqid s D if s = a b 0 ˙ = s D if s = a b 0 ˙
47 17 45 46 sniffsupp φ finSupp 0 ˙ s D if s = a b 0 ˙
48 47 adantr φ a S b B finSupp 0 ˙ s D if s = a b 0 ˙
49 4 39 40 3 24 mplelbas s D if s = a b 0 ˙ Base P s D if s = a b 0 ˙ Base I mPwSer R finSupp 0 ˙ s D if s = a b 0 ˙
50 43 48 49 sylanbrc φ a S b B s D if s = a b 0 ˙ Base P
51 elneeldif a S s D S a s
52 51 necomd a S s D S s a
53 52 adantll φ a S s D S s a
54 53 adantlrr φ a S b B s D S s a
55 54 neneqd φ a S b B s D S ¬ s = a
56 55 iffalsed φ a S b B s D S if s = a b 0 ˙ = 0 ˙
57 17 adantr φ a S b B D V
58 56 57 suppss2 φ a S b B s D if s = a b 0 ˙ supp 0 ˙ S
59 58 7 sseqtrdi φ a S b B s D if s = a b 0 ˙ supp 0 ˙ g D | fld 𝑠 0 g = N
60 1 4 24 3 6 25 26 27 50 59 ismhp2 φ a S b B s D if s = a b 0 ˙ H N
61 60 13 elind φ a S b B s D if s = a b 0 ˙ H N G
62 23 61 sylanr1 φ a g D | fld 𝑠 0 g = N b B s D if s = a b 0 ˙ H N G
63 8 adantr φ x H N G y H N G I V
64 9 adantr φ x H N G y H N G R Grp
65 10 adantr φ x H N G y H N G N 0
66 elinel1 x H N G x H N
67 66 ad2antrl φ x H N G y H N G x H N
68 1 4 24 63 64 65 67 mhpmpl φ x H N G y H N G x Base P
69 elinel1 y H N G y H N
70 69 ad2antll φ x H N G y H N G y H N
71 1 4 24 63 64 65 70 mhpmpl φ x H N G y H N G y Base P
72 4 24 15 5 68 71 mpladd φ x H N G y H N G x + ˙ y = x + R f y
73 1 4 5 63 64 65 67 70 mhpaddcl φ x H N G y H N G x + ˙ y H N
74 73 14 elind φ x H N G y H N G x + ˙ y H N G
75 72 74 eqeltrrd φ x H N G y H N G x + R f y H N G
76 1 4 24 8 9 10 11 mhpmpl φ X Base P
77 4 2 24 6 76 mplelf φ X : D B
78 4 24 3 76 9 mplelsfi φ finSupp 0 ˙ X
79 1 3 6 8 9 10 11 mhpdeg φ X supp 0 ˙ g D | fld 𝑠 0 g = N
80 2 3 15 9 17 19 21 62 75 77 78 79 fsuppssind φ X H N G
81 80 elin2d φ X G