Metamath Proof Explorer


Theorem elneeldif

Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023)

Ref Expression
Assertion elneeldif XAYBAXY

Proof

Step Hyp Ref Expression
1 eldif YBAYB¬YA
2 nelne2 XA¬YAXY
3 2 ex XA¬YAXY
4 3 adantld XAYB¬YAXY
5 1 4 biimtrid XAYBAXY
6 5 imp XAYBAXY