Description: Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismid.p | |- P = ( Base ` G ) |
|
| ismid.d | |- .- = ( dist ` G ) |
||
| ismid.i | |- I = ( Itv ` G ) |
||
| ismid.g | |- ( ph -> G e. TarskiG ) |
||
| ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
||
| midcl.1 | |- ( ph -> A e. P ) |
||
| midcl.2 | |- ( ph -> B e. P ) |
||
| Assertion | midid | |- ( ph -> ( A ( midG ` G ) A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | |- P = ( Base ` G ) |
|
| 2 | ismid.d | |- .- = ( dist ` G ) |
|
| 3 | ismid.i | |- I = ( Itv ` G ) |
|
| 4 | ismid.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
|
| 6 | midcl.1 | |- ( ph -> A e. P ) |
|
| 7 | midcl.2 | |- ( ph -> B e. P ) |
|
| 8 | 1 2 3 4 5 6 6 | midcl | |- ( ph -> ( A ( midG ` G ) A ) e. P ) |
| 9 | 1 2 3 4 5 6 6 | midbtwn | |- ( ph -> ( A ( midG ` G ) A ) e. ( A I A ) ) |
| 10 | 1 2 3 4 6 8 9 | axtgbtwnid | |- ( ph -> A = ( A ( midG ` G ) A ) ) |
| 11 | 10 | eqcomd | |- ( ph -> ( A ( midG ` G ) A ) = A ) |