Metamath Proof Explorer


Theorem midid

Description: Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p
|- P = ( Base ` G )
ismid.d
|- .- = ( dist ` G )
ismid.i
|- I = ( Itv ` G )
ismid.g
|- ( ph -> G e. TarskiG )
ismid.1
|- ( ph -> G TarskiGDim>= 2 )
midcl.1
|- ( ph -> A e. P )
midcl.2
|- ( ph -> B e. P )
Assertion midid
|- ( ph -> ( A ( midG ` G ) A ) = A )

Proof

Step Hyp Ref Expression
1 ismid.p
 |-  P = ( Base ` G )
2 ismid.d
 |-  .- = ( dist ` G )
3 ismid.i
 |-  I = ( Itv ` G )
4 ismid.g
 |-  ( ph -> G e. TarskiG )
5 ismid.1
 |-  ( ph -> G TarskiGDim>= 2 )
6 midcl.1
 |-  ( ph -> A e. P )
7 midcl.2
 |-  ( ph -> B e. P )
8 1 2 3 4 5 6 6 midcl
 |-  ( ph -> ( A ( midG ` G ) A ) e. P )
9 1 2 3 4 5 6 6 midbtwn
 |-  ( ph -> ( A ( midG ` G ) A ) e. ( A I A ) )
10 1 2 3 4 6 8 9 axtgbtwnid
 |-  ( ph -> A = ( A ( midG ` G ) A ) )
11 10 eqcomd
 |-  ( ph -> ( A ( midG ` G ) A ) = A )