| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
midcl.1 |
|- ( ph -> A e. P ) |
| 7 |
|
midcl.2 |
|- ( ph -> B e. P ) |
| 8 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
| 9 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 10 |
1 2 3 4 5 7 6
|
midcl |
|- ( ph -> ( B ( midG ` G ) A ) e. P ) |
| 11 |
|
eqid |
|- ( ( pInvG ` G ) ` ( B ( midG ` G ) A ) ) = ( ( pInvG ` G ) ` ( B ( midG ` G ) A ) ) |
| 12 |
|
eqidd |
|- ( ph -> ( B ( midG ` G ) A ) = ( B ( midG ` G ) A ) ) |
| 13 |
1 2 3 4 5 7 6 12
|
midcgr |
|- ( ph -> ( ( B ( midG ` G ) A ) .- B ) = ( ( B ( midG ` G ) A ) .- A ) ) |
| 14 |
1 2 3 4 5 7 6
|
midbtwn |
|- ( ph -> ( B ( midG ` G ) A ) e. ( B I A ) ) |
| 15 |
1 2 3 8 9 4 10 11 6 7 13 14
|
ismir |
|- ( ph -> B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) A ) ) ` A ) ) |
| 16 |
1 2 3 4 5 6 7 9 10
|
ismidb |
|- ( ph -> ( B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) A ) ) ` A ) <-> ( A ( midG ` G ) B ) = ( B ( midG ` G ) A ) ) ) |
| 17 |
15 16
|
mpbid |
|- ( ph -> ( A ( midG ` G ) B ) = ( B ( midG ` G ) A ) ) |