Metamath Proof Explorer


Theorem midcom

Description: Commutativity rule for the midpoint. (Contributed by Thierry Arnoux, 2-Dec-2019)

Ref Expression
Hypotheses ismid.p
|- P = ( Base ` G )
ismid.d
|- .- = ( dist ` G )
ismid.i
|- I = ( Itv ` G )
ismid.g
|- ( ph -> G e. TarskiG )
ismid.1
|- ( ph -> G TarskiGDim>= 2 )
midcl.1
|- ( ph -> A e. P )
midcl.2
|- ( ph -> B e. P )
Assertion midcom
|- ( ph -> ( A ( midG ` G ) B ) = ( B ( midG ` G ) A ) )

Proof

Step Hyp Ref Expression
1 ismid.p
 |-  P = ( Base ` G )
2 ismid.d
 |-  .- = ( dist ` G )
3 ismid.i
 |-  I = ( Itv ` G )
4 ismid.g
 |-  ( ph -> G e. TarskiG )
5 ismid.1
 |-  ( ph -> G TarskiGDim>= 2 )
6 midcl.1
 |-  ( ph -> A e. P )
7 midcl.2
 |-  ( ph -> B e. P )
8 eqid
 |-  ( LineG ` G ) = ( LineG ` G )
9 eqid
 |-  ( pInvG ` G ) = ( pInvG ` G )
10 1 2 3 4 5 7 6 midcl
 |-  ( ph -> ( B ( midG ` G ) A ) e. P )
11 eqid
 |-  ( ( pInvG ` G ) ` ( B ( midG ` G ) A ) ) = ( ( pInvG ` G ) ` ( B ( midG ` G ) A ) )
12 eqidd
 |-  ( ph -> ( B ( midG ` G ) A ) = ( B ( midG ` G ) A ) )
13 1 2 3 4 5 7 6 12 midcgr
 |-  ( ph -> ( ( B ( midG ` G ) A ) .- B ) = ( ( B ( midG ` G ) A ) .- A ) )
14 1 2 3 4 5 7 6 midbtwn
 |-  ( ph -> ( B ( midG ` G ) A ) e. ( B I A ) )
15 1 2 3 8 9 4 10 11 6 7 13 14 ismir
 |-  ( ph -> B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) A ) ) ` A ) )
16 1 2 3 4 5 6 7 9 10 ismidb
 |-  ( ph -> ( B = ( ( ( pInvG ` G ) ` ( B ( midG ` G ) A ) ) ` A ) <-> ( A ( midG ` G ) B ) = ( B ( midG ` G ) A ) ) )
17 15 16 mpbid
 |-  ( ph -> ( A ( midG ` G ) B ) = ( B ( midG ` G ) A ) )