Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
|- P = ( Base ` G ) |
2 |
|
ismid.d |
|- .- = ( dist ` G ) |
3 |
|
ismid.i |
|- I = ( Itv ` G ) |
4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
6 |
|
midcl.1 |
|- ( ph -> A e. P ) |
7 |
|
midcl.2 |
|- ( ph -> B e. P ) |
8 |
|
mirmid.s |
|- S = ( ( pInvG ` G ) ` M ) |
9 |
|
mirmid.x |
|- ( ph -> M e. P ) |
10 |
|
eqidd |
|- ( ph -> ( A ( midG ` G ) B ) = ( A ( midG ` G ) B ) ) |
11 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
12 |
1 2 3 4 5 6 7
|
midcl |
|- ( ph -> ( A ( midG ` G ) B ) e. P ) |
13 |
1 2 3 4 5 6 7 11 12
|
ismidb |
|- ( ph -> ( B = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) B ) ) ` A ) <-> ( A ( midG ` G ) B ) = ( A ( midG ` G ) B ) ) ) |
14 |
10 13
|
mpbird |
|- ( ph -> B = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) B ) ) ` A ) ) |
15 |
14
|
fveq2d |
|- ( ph -> ( S ` B ) = ( S ` ( ( ( pInvG ` G ) ` ( A ( midG ` G ) B ) ) ` A ) ) ) |
16 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
17 |
1 2 3 16 11 4 9 8 6 12
|
mirmir2 |
|- ( ph -> ( S ` ( ( ( pInvG ` G ) ` ( A ( midG ` G ) B ) ) ` A ) ) = ( ( ( pInvG ` G ) ` ( S ` ( A ( midG ` G ) B ) ) ) ` ( S ` A ) ) ) |
18 |
15 17
|
eqtrd |
|- ( ph -> ( S ` B ) = ( ( ( pInvG ` G ) ` ( S ` ( A ( midG ` G ) B ) ) ) ` ( S ` A ) ) ) |
19 |
1 2 3 16 11 4 9 8 6
|
mircl |
|- ( ph -> ( S ` A ) e. P ) |
20 |
1 2 3 16 11 4 9 8 7
|
mircl |
|- ( ph -> ( S ` B ) e. P ) |
21 |
1 2 3 16 11 4 9 8 12
|
mircl |
|- ( ph -> ( S ` ( A ( midG ` G ) B ) ) e. P ) |
22 |
1 2 3 4 5 19 20 11 21
|
ismidb |
|- ( ph -> ( ( S ` B ) = ( ( ( pInvG ` G ) ` ( S ` ( A ( midG ` G ) B ) ) ) ` ( S ` A ) ) <-> ( ( S ` A ) ( midG ` G ) ( S ` B ) ) = ( S ` ( A ( midG ` G ) B ) ) ) ) |
23 |
18 22
|
mpbid |
|- ( ph -> ( ( S ` A ) ( midG ` G ) ( S ` B ) ) = ( S ` ( A ( midG ` G ) B ) ) ) |