| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
midcl.1 |
|- ( ph -> A e. P ) |
| 7 |
|
midcl.2 |
|- ( ph -> B e. P ) |
| 8 |
|
mirmid.s |
|- S = ( ( pInvG ` G ) ` M ) |
| 9 |
|
mirmid.x |
|- ( ph -> M e. P ) |
| 10 |
|
eqidd |
|- ( ph -> ( A ( midG ` G ) B ) = ( A ( midG ` G ) B ) ) |
| 11 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 12 |
1 2 3 4 5 6 7
|
midcl |
|- ( ph -> ( A ( midG ` G ) B ) e. P ) |
| 13 |
1 2 3 4 5 6 7 11 12
|
ismidb |
|- ( ph -> ( B = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) B ) ) ` A ) <-> ( A ( midG ` G ) B ) = ( A ( midG ` G ) B ) ) ) |
| 14 |
10 13
|
mpbird |
|- ( ph -> B = ( ( ( pInvG ` G ) ` ( A ( midG ` G ) B ) ) ` A ) ) |
| 15 |
14
|
fveq2d |
|- ( ph -> ( S ` B ) = ( S ` ( ( ( pInvG ` G ) ` ( A ( midG ` G ) B ) ) ` A ) ) ) |
| 16 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
| 17 |
1 2 3 16 11 4 9 8 6 12
|
mirmir2 |
|- ( ph -> ( S ` ( ( ( pInvG ` G ) ` ( A ( midG ` G ) B ) ) ` A ) ) = ( ( ( pInvG ` G ) ` ( S ` ( A ( midG ` G ) B ) ) ) ` ( S ` A ) ) ) |
| 18 |
15 17
|
eqtrd |
|- ( ph -> ( S ` B ) = ( ( ( pInvG ` G ) ` ( S ` ( A ( midG ` G ) B ) ) ) ` ( S ` A ) ) ) |
| 19 |
1 2 3 16 11 4 9 8 6
|
mircl |
|- ( ph -> ( S ` A ) e. P ) |
| 20 |
1 2 3 16 11 4 9 8 7
|
mircl |
|- ( ph -> ( S ` B ) e. P ) |
| 21 |
1 2 3 16 11 4 9 8 12
|
mircl |
|- ( ph -> ( S ` ( A ( midG ` G ) B ) ) e. P ) |
| 22 |
1 2 3 4 5 19 20 11 21
|
ismidb |
|- ( ph -> ( ( S ` B ) = ( ( ( pInvG ` G ) ` ( S ` ( A ( midG ` G ) B ) ) ) ` ( S ` A ) ) <-> ( ( S ` A ) ( midG ` G ) ( S ` B ) ) = ( S ` ( A ( midG ` G ) B ) ) ) ) |
| 23 |
18 22
|
mpbid |
|- ( ph -> ( ( S ` A ) ( midG ` G ) ( S ` B ) ) = ( S ` ( A ( midG ` G ) B ) ) ) |