| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
midcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
midcl.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
mirmid.s |
⊢ 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) |
| 9 |
|
mirmid.x |
⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) |
| 11 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 12 |
1 2 3 4 5 6 7
|
midcl |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝑃 ) |
| 13 |
1 2 3 4 5 6 7 11 12
|
ismidb |
⊢ ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) |
| 14 |
10 13
|
mpbird |
⊢ ( 𝜑 → 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) ) |
| 16 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
| 17 |
1 2 3 16 11 4 9 8 6 12
|
mirmir2 |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 18 |
15 17
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 19 |
1 2 3 16 11 4 9 8 6
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ 𝑃 ) |
| 20 |
1 2 3 16 11 4 9 8 7
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) ∈ 𝑃 ) |
| 21 |
1 2 3 16 11 4 9 8 12
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ∈ 𝑃 ) |
| 22 |
1 2 3 4 5 19 20 11 21
|
ismidb |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐵 ) ) = ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ) |
| 23 |
18 22
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐵 ) ) = ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) |