Metamath Proof Explorer


Theorem mirmid

Description: Point inversion preserves midpoints. (Contributed by Thierry Arnoux, 12-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
midcl.1 φAP
midcl.2 φBP
mirmid.s S=pInv𝒢GM
mirmid.x φMP
Assertion mirmid φSAmid𝒢GSB=SAmid𝒢GB

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 midcl.1 φAP
7 midcl.2 φBP
8 mirmid.s S=pInv𝒢GM
9 mirmid.x φMP
10 eqidd φAmid𝒢GB=Amid𝒢GB
11 eqid pInv𝒢G=pInv𝒢G
12 1 2 3 4 5 6 7 midcl φAmid𝒢GBP
13 1 2 3 4 5 6 7 11 12 ismidb φB=pInv𝒢GAmid𝒢GBAAmid𝒢GB=Amid𝒢GB
14 10 13 mpbird φB=pInv𝒢GAmid𝒢GBA
15 14 fveq2d φSB=SpInv𝒢GAmid𝒢GBA
16 eqid Line𝒢G=Line𝒢G
17 1 2 3 16 11 4 9 8 6 12 mirmir2 φSpInv𝒢GAmid𝒢GBA=pInv𝒢GSAmid𝒢GBSA
18 15 17 eqtrd φSB=pInv𝒢GSAmid𝒢GBSA
19 1 2 3 16 11 4 9 8 6 mircl φSAP
20 1 2 3 16 11 4 9 8 7 mircl φSBP
21 1 2 3 16 11 4 9 8 12 mircl φSAmid𝒢GBP
22 1 2 3 4 5 19 20 11 21 ismidb φSB=pInv𝒢GSAmid𝒢GBSASAmid𝒢GSB=SAmid𝒢GB
23 18 22 mpbid φSAmid𝒢GSB=SAmid𝒢GB