Metamath Proof Explorer


Theorem midcl

Description: Closure of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
midcl.1 φAP
midcl.2 φBP
Assertion midcl φAmid𝒢GBP

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 midcl.1 φAP
7 midcl.2 φBP
8 1 2 3 4 5 midf φmid𝒢G:P×PP
9 8 6 7 fovcdmd φAmid𝒢GBP