Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
midcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
midcl.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
ismidb.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
9 |
|
ismidb.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) |
10 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
11 |
1 2 3 10 4 8 6 7 5
|
mideu |
⊢ ( 𝜑 → ∃! 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( 𝑆 ‘ 𝑚 ) = ( 𝑆 ‘ 𝑀 ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝐴 ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ↔ 𝐵 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝐴 ) ) ) |
15 |
14
|
riota2 |
⊢ ( ( 𝑀 ∈ 𝑃 ∧ ∃! 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) → ( 𝐵 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝐴 ) ↔ ( ℩ 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) = 𝑀 ) ) |
16 |
9 11 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝐴 ) ↔ ( ℩ 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) = 𝑀 ) ) |
17 |
|
df-mid |
⊢ midG = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
19 |
18 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑃 ) |
20 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( pInvG ‘ 𝑔 ) = ( pInvG ‘ 𝐺 ) ) |
21 |
20 8
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( pInvG ‘ 𝑔 ) = 𝑆 ) |
22 |
21
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) = ( 𝑆 ‘ 𝑚 ) ) |
23 |
22
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ↔ 𝑏 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ) ) |
25 |
19 24
|
riotaeqbidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) = ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ) ) |
26 |
19 19 25
|
mpoeq123dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) = ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ) ) ) |
27 |
4
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
28 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
29 |
28 28
|
mpoex |
⊢ ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ) ) ∈ V |
30 |
29
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ) ) ∈ V ) |
31 |
17 26 27 30
|
fvmptd3 |
⊢ ( 𝜑 → ( midG ‘ 𝐺 ) = ( 𝑎 ∈ 𝑃 , 𝑏 ∈ 𝑃 ↦ ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ) ) ) |
32 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → 𝑏 = 𝐵 ) |
33 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → 𝑎 = 𝐴 ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) |
35 |
32 34
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( 𝑏 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ↔ 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) ) |
36 |
35
|
riotabidv |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( ℩ 𝑚 ∈ 𝑃 𝑏 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑎 ) ) = ( ℩ 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) ) |
37 |
|
riotacl |
⊢ ( ∃! 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) → ( ℩ 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) ∈ 𝑃 ) |
38 |
11 37
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) ∈ 𝑃 ) |
39 |
31 36 6 7 38
|
ovmpod |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( ℩ 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) ) |
40 |
39
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = 𝑀 ↔ ( ℩ 𝑚 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝐴 ) ) = 𝑀 ) ) |
41 |
16 40
|
bitr4d |
⊢ ( 𝜑 → ( 𝐵 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = 𝑀 ) ) |