Metamath Proof Explorer


Definition df-mid

Description: Define the midpoint operation. Definition 10.1 of Schwabhauser p. 88. See ismidb , midbtwn , and midcgr . (Contributed by Thierry Arnoux, 9-Jun-2019)

Ref Expression
Assertion df-mid midG = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmid midG
1 vg 𝑔
2 cvv V
3 va 𝑎
4 cbs Base
5 1 cv 𝑔
6 5 4 cfv ( Base ‘ 𝑔 )
7 vb 𝑏
8 vm 𝑚
9 7 cv 𝑏
10 cmir pInvG
11 5 10 cfv ( pInvG ‘ 𝑔 )
12 8 cv 𝑚
13 12 11 cfv ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 )
14 3 cv 𝑎
15 14 13 cfv ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 )
16 9 15 wceq 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 )
17 16 8 6 crio ( 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) )
18 3 7 6 6 17 cmpo ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) )
19 1 2 18 cmpt ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) )
20 0 19 wceq midG = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) , 𝑏 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑚 ∈ ( Base ‘ 𝑔 ) 𝑏 = ( ( ( pInvG ‘ 𝑔 ) ‘ 𝑚 ) ‘ 𝑎 ) ) ) )