| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
midcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
midcl.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
1 2 3 4 5 6 7
|
midcl |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝑃 ) |
| 9 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
| 10 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 11 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) = ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) |
| 12 |
1 2 3 9 10 4 8 11 6
|
mirbtwn |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) |
| 14 |
1 2 3 4 5 6 7 10 8
|
ismidb |
⊢ ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) |
| 15 |
13 14
|
mpbird |
⊢ ( 𝜑 → 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( 𝐵 𝐼 𝐴 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
| 17 |
12 16
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 18 |
1 2 3 4 7 8 6 17
|
tgbtwncom |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ ( 𝐴 𝐼 𝐵 ) ) |