Metamath Proof Explorer


Theorem midbtwn

Description: Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
midcl.1 φ A P
midcl.2 φ B P
Assertion midbtwn φ A mid 𝒢 G B A I B

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 midcl.1 φ A P
7 midcl.2 φ B P
8 1 2 3 4 5 6 7 midcl φ A mid 𝒢 G B P
9 eqid Line 𝒢 G = Line 𝒢 G
10 eqid pInv 𝒢 G = pInv 𝒢 G
11 eqid pInv 𝒢 G A mid 𝒢 G B = pInv 𝒢 G A mid 𝒢 G B
12 1 2 3 9 10 4 8 11 6 mirbtwn φ A mid 𝒢 G B pInv 𝒢 G A mid 𝒢 G B A I A
13 eqidd φ A mid 𝒢 G B = A mid 𝒢 G B
14 1 2 3 4 5 6 7 10 8 ismidb φ B = pInv 𝒢 G A mid 𝒢 G B A A mid 𝒢 G B = A mid 𝒢 G B
15 13 14 mpbird φ B = pInv 𝒢 G A mid 𝒢 G B A
16 15 oveq1d φ B I A = pInv 𝒢 G A mid 𝒢 G B A I A
17 12 16 eleqtrrd φ A mid 𝒢 G B B I A
18 1 2 3 4 7 8 6 17 tgbtwncom φ A mid 𝒢 G B A I B