Metamath Proof Explorer


Theorem midbtwn

Description: Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
midcl.1 φAP
midcl.2 φBP
Assertion midbtwn φAmid𝒢GBAIB

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 midcl.1 φAP
7 midcl.2 φBP
8 1 2 3 4 5 6 7 midcl φAmid𝒢GBP
9 eqid Line𝒢G=Line𝒢G
10 eqid pInv𝒢G=pInv𝒢G
11 eqid pInv𝒢GAmid𝒢GB=pInv𝒢GAmid𝒢GB
12 1 2 3 9 10 4 8 11 6 mirbtwn φAmid𝒢GBpInv𝒢GAmid𝒢GBAIA
13 eqidd φAmid𝒢GB=Amid𝒢GB
14 1 2 3 4 5 6 7 10 8 ismidb φB=pInv𝒢GAmid𝒢GBAAmid𝒢GB=Amid𝒢GB
15 13 14 mpbird φB=pInv𝒢GAmid𝒢GBA
16 15 oveq1d φBIA=pInv𝒢GAmid𝒢GBAIA
17 12 16 eleqtrrd φAmid𝒢GBBIA
18 1 2 3 4 7 8 6 17 tgbtwncom φAmid𝒢GBAIB