Metamath Proof Explorer


Theorem midcgr

Description: Congruence of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
midcl.1 φAP
midcl.2 φBP
midcgr.1 φAmid𝒢GB=C
Assertion midcgr φC-˙A=C-˙B

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 midcl.1 φAP
7 midcl.2 φBP
8 midcgr.1 φAmid𝒢GB=C
9 eqid pInv𝒢G=pInv𝒢G
10 1 2 3 4 5 6 7 midcl φAmid𝒢GBP
11 8 10 eqeltrrd φCP
12 1 2 3 4 5 6 7 9 11 ismidb φB=pInv𝒢GCAAmid𝒢GB=C
13 8 12 mpbird φB=pInv𝒢GCA
14 13 oveq2d φC-˙B=C-˙pInv𝒢GCA
15 eqid Line𝒢G=Line𝒢G
16 eqid pInv𝒢GC=pInv𝒢GC
17 1 2 3 15 9 4 11 16 6 mircgr φC-˙pInv𝒢GCA=C-˙A
18 14 17 eqtr2d φC-˙A=C-˙B