Metamath Proof Explorer


Theorem midcgr

Description: Congruence of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
midcl.1 φ A P
midcl.2 φ B P
midcgr.1 φ A mid 𝒢 G B = C
Assertion midcgr φ C - ˙ A = C - ˙ B

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 midcl.1 φ A P
7 midcl.2 φ B P
8 midcgr.1 φ A mid 𝒢 G B = C
9 eqid pInv 𝒢 G = pInv 𝒢 G
10 1 2 3 4 5 6 7 midcl φ A mid 𝒢 G B P
11 8 10 eqeltrrd φ C P
12 1 2 3 4 5 6 7 9 11 ismidb φ B = pInv 𝒢 G C A A mid 𝒢 G B = C
13 8 12 mpbird φ B = pInv 𝒢 G C A
14 13 oveq2d φ C - ˙ B = C - ˙ pInv 𝒢 G C A
15 eqid Line 𝒢 G = Line 𝒢 G
16 eqid pInv 𝒢 G C = pInv 𝒢 G C
17 1 2 3 15 9 4 11 16 6 mircgr φ C - ˙ pInv 𝒢 G C A = C - ˙ A
18 14 17 eqtr2d φ C - ˙ A = C - ˙ B