Metamath Proof Explorer


Theorem midcgr

Description: Congruence of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p
|- P = ( Base ` G )
ismid.d
|- .- = ( dist ` G )
ismid.i
|- I = ( Itv ` G )
ismid.g
|- ( ph -> G e. TarskiG )
ismid.1
|- ( ph -> G TarskiGDim>= 2 )
midcl.1
|- ( ph -> A e. P )
midcl.2
|- ( ph -> B e. P )
midcgr.1
|- ( ph -> ( A ( midG ` G ) B ) = C )
Assertion midcgr
|- ( ph -> ( C .- A ) = ( C .- B ) )

Proof

Step Hyp Ref Expression
1 ismid.p
 |-  P = ( Base ` G )
2 ismid.d
 |-  .- = ( dist ` G )
3 ismid.i
 |-  I = ( Itv ` G )
4 ismid.g
 |-  ( ph -> G e. TarskiG )
5 ismid.1
 |-  ( ph -> G TarskiGDim>= 2 )
6 midcl.1
 |-  ( ph -> A e. P )
7 midcl.2
 |-  ( ph -> B e. P )
8 midcgr.1
 |-  ( ph -> ( A ( midG ` G ) B ) = C )
9 eqid
 |-  ( pInvG ` G ) = ( pInvG ` G )
10 1 2 3 4 5 6 7 midcl
 |-  ( ph -> ( A ( midG ` G ) B ) e. P )
11 8 10 eqeltrrd
 |-  ( ph -> C e. P )
12 1 2 3 4 5 6 7 9 11 ismidb
 |-  ( ph -> ( B = ( ( ( pInvG ` G ) ` C ) ` A ) <-> ( A ( midG ` G ) B ) = C ) )
13 8 12 mpbird
 |-  ( ph -> B = ( ( ( pInvG ` G ) ` C ) ` A ) )
14 13 oveq2d
 |-  ( ph -> ( C .- B ) = ( C .- ( ( ( pInvG ` G ) ` C ) ` A ) ) )
15 eqid
 |-  ( LineG ` G ) = ( LineG ` G )
16 eqid
 |-  ( ( pInvG ` G ) ` C ) = ( ( pInvG ` G ) ` C )
17 1 2 3 15 9 4 11 16 6 mircgr
 |-  ( ph -> ( C .- ( ( ( pInvG ` G ) ` C ) ` A ) ) = ( C .- A ) )
18 14 17 eqtr2d
 |-  ( ph -> ( C .- A ) = ( C .- B ) )