| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
midcl.1 |
|- ( ph -> A e. P ) |
| 7 |
|
midcl.2 |
|- ( ph -> B e. P ) |
| 8 |
|
midcgr.1 |
|- ( ph -> ( A ( midG ` G ) B ) = C ) |
| 9 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 10 |
1 2 3 4 5 6 7
|
midcl |
|- ( ph -> ( A ( midG ` G ) B ) e. P ) |
| 11 |
8 10
|
eqeltrrd |
|- ( ph -> C e. P ) |
| 12 |
1 2 3 4 5 6 7 9 11
|
ismidb |
|- ( ph -> ( B = ( ( ( pInvG ` G ) ` C ) ` A ) <-> ( A ( midG ` G ) B ) = C ) ) |
| 13 |
8 12
|
mpbird |
|- ( ph -> B = ( ( ( pInvG ` G ) ` C ) ` A ) ) |
| 14 |
13
|
oveq2d |
|- ( ph -> ( C .- B ) = ( C .- ( ( ( pInvG ` G ) ` C ) ` A ) ) ) |
| 15 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
| 16 |
|
eqid |
|- ( ( pInvG ` G ) ` C ) = ( ( pInvG ` G ) ` C ) |
| 17 |
1 2 3 15 9 4 11 16 6
|
mircgr |
|- ( ph -> ( C .- ( ( ( pInvG ` G ) ` C ) ` A ) ) = ( C .- A ) ) |
| 18 |
14 17
|
eqtr2d |
|- ( ph -> ( C .- A ) = ( C .- B ) ) |