Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
|- P = ( Base ` G ) |
2 |
|
ismid.d |
|- .- = ( dist ` G ) |
3 |
|
ismid.i |
|- I = ( Itv ` G ) |
4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
6 |
|
midcl.1 |
|- ( ph -> A e. P ) |
7 |
|
midcl.2 |
|- ( ph -> B e. P ) |
8 |
|
ismidb.s |
|- S = ( pInvG ` G ) |
9 |
|
ismidb.m |
|- ( ph -> M e. P ) |
10 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
11 |
1 2 3 10 4 8 6 7 5
|
mideu |
|- ( ph -> E! m e. P B = ( ( S ` m ) ` A ) ) |
12 |
|
fveq2 |
|- ( m = M -> ( S ` m ) = ( S ` M ) ) |
13 |
12
|
fveq1d |
|- ( m = M -> ( ( S ` m ) ` A ) = ( ( S ` M ) ` A ) ) |
14 |
13
|
eqeq2d |
|- ( m = M -> ( B = ( ( S ` m ) ` A ) <-> B = ( ( S ` M ) ` A ) ) ) |
15 |
14
|
riota2 |
|- ( ( M e. P /\ E! m e. P B = ( ( S ` m ) ` A ) ) -> ( B = ( ( S ` M ) ` A ) <-> ( iota_ m e. P B = ( ( S ` m ) ` A ) ) = M ) ) |
16 |
9 11 15
|
syl2anc |
|- ( ph -> ( B = ( ( S ` M ) ` A ) <-> ( iota_ m e. P B = ( ( S ` m ) ` A ) ) = M ) ) |
17 |
|
df-mid |
|- midG = ( g e. _V |-> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) ) |
18 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
19 |
18 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
20 |
|
fveq2 |
|- ( g = G -> ( pInvG ` g ) = ( pInvG ` G ) ) |
21 |
20 8
|
eqtr4di |
|- ( g = G -> ( pInvG ` g ) = S ) |
22 |
21
|
fveq1d |
|- ( g = G -> ( ( pInvG ` g ) ` m ) = ( S ` m ) ) |
23 |
22
|
fveq1d |
|- ( g = G -> ( ( ( pInvG ` g ) ` m ) ` a ) = ( ( S ` m ) ` a ) ) |
24 |
23
|
eqeq2d |
|- ( g = G -> ( b = ( ( ( pInvG ` g ) ` m ) ` a ) <-> b = ( ( S ` m ) ` a ) ) ) |
25 |
19 24
|
riotaeqbidv |
|- ( g = G -> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) = ( iota_ m e. P b = ( ( S ` m ) ` a ) ) ) |
26 |
19 19 25
|
mpoeq123dv |
|- ( g = G -> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) = ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( S ` m ) ` a ) ) ) ) |
27 |
4
|
elexd |
|- ( ph -> G e. _V ) |
28 |
1
|
fvexi |
|- P e. _V |
29 |
28 28
|
mpoex |
|- ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( S ` m ) ` a ) ) ) e. _V |
30 |
29
|
a1i |
|- ( ph -> ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( S ` m ) ` a ) ) ) e. _V ) |
31 |
17 26 27 30
|
fvmptd3 |
|- ( ph -> ( midG ` G ) = ( a e. P , b e. P |-> ( iota_ m e. P b = ( ( S ` m ) ` a ) ) ) ) |
32 |
|
simprr |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> b = B ) |
33 |
|
simprl |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> a = A ) |
34 |
33
|
fveq2d |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> ( ( S ` m ) ` a ) = ( ( S ` m ) ` A ) ) |
35 |
32 34
|
eqeq12d |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> ( b = ( ( S ` m ) ` a ) <-> B = ( ( S ` m ) ` A ) ) ) |
36 |
35
|
riotabidv |
|- ( ( ph /\ ( a = A /\ b = B ) ) -> ( iota_ m e. P b = ( ( S ` m ) ` a ) ) = ( iota_ m e. P B = ( ( S ` m ) ` A ) ) ) |
37 |
|
riotacl |
|- ( E! m e. P B = ( ( S ` m ) ` A ) -> ( iota_ m e. P B = ( ( S ` m ) ` A ) ) e. P ) |
38 |
11 37
|
syl |
|- ( ph -> ( iota_ m e. P B = ( ( S ` m ) ` A ) ) e. P ) |
39 |
31 36 6 7 38
|
ovmpod |
|- ( ph -> ( A ( midG ` G ) B ) = ( iota_ m e. P B = ( ( S ` m ) ` A ) ) ) |
40 |
39
|
eqeq1d |
|- ( ph -> ( ( A ( midG ` G ) B ) = M <-> ( iota_ m e. P B = ( ( S ` m ) ` A ) ) = M ) ) |
41 |
16 40
|
bitr4d |
|- ( ph -> ( B = ( ( S ` M ) ` A ) <-> ( A ( midG ` G ) B ) = M ) ) |