Step |
Hyp |
Ref |
Expression |
0 |
|
cmid |
|- midG |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- g |
6 |
5 4
|
cfv |
|- ( Base ` g ) |
7 |
|
vb |
|- b |
8 |
|
vm |
|- m |
9 |
7
|
cv |
|- b |
10 |
|
cmir |
|- pInvG |
11 |
5 10
|
cfv |
|- ( pInvG ` g ) |
12 |
8
|
cv |
|- m |
13 |
12 11
|
cfv |
|- ( ( pInvG ` g ) ` m ) |
14 |
3
|
cv |
|- a |
15 |
14 13
|
cfv |
|- ( ( ( pInvG ` g ) ` m ) ` a ) |
16 |
9 15
|
wceq |
|- b = ( ( ( pInvG ` g ) ` m ) ` a ) |
17 |
16 8 6
|
crio |
|- ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) |
18 |
3 7 6 6 17
|
cmpo |
|- ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) |
19 |
1 2 18
|
cmpt |
|- ( g e. _V |-> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) ) |
20 |
0 19
|
wceq |
|- midG = ( g e. _V |-> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) ) |