Metamath Proof Explorer


Definition df-mid

Description: Define the midpoint operation. Definition 10.1 of Schwabhauser p. 88. See ismidb , midbtwn , and midcgr . (Contributed by Thierry Arnoux, 9-Jun-2019)

Ref Expression
Assertion df-mid
|- midG = ( g e. _V |-> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmid
 |-  midG
1 vg
 |-  g
2 cvv
 |-  _V
3 va
 |-  a
4 cbs
 |-  Base
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Base ` g )
7 vb
 |-  b
8 vm
 |-  m
9 7 cv
 |-  b
10 cmir
 |-  pInvG
11 5 10 cfv
 |-  ( pInvG ` g )
12 8 cv
 |-  m
13 12 11 cfv
 |-  ( ( pInvG ` g ) ` m )
14 3 cv
 |-  a
15 14 13 cfv
 |-  ( ( ( pInvG ` g ) ` m ) ` a )
16 9 15 wceq
 |-  b = ( ( ( pInvG ` g ) ` m ) ` a )
17 16 8 6 crio
 |-  ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) )
18 3 7 6 6 17 cmpo
 |-  ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) )
19 1 2 18 cmpt
 |-  ( g e. _V |-> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) )
20 0 19 wceq
 |-  midG = ( g e. _V |-> ( a e. ( Base ` g ) , b e. ( Base ` g ) |-> ( iota_ m e. ( Base ` g ) b = ( ( ( pInvG ` g ) ` m ) ` a ) ) ) )